用R解析Mahout用户推荐协同过滤算法(UserCF)

作者:

张丹(Conan), 程序员Java,R,PHP,Javascript

http://blog.fens.me

前言 用R全面解析Mahout的基于用户推荐协同过滤算法(UserCF),改进的采用欧氏距离,并用R语言实现,与Mahout的结果进行对比。

Mahout是Hahoop家族用于机器学习的一个框架,包括三个主要部分,推荐,聚类,分类! 我在这里做的是推荐部分。推荐系统在现在的互联网应用中很常见,比如,亚马逊会推荐你买书,豆瓣会给你一个书评,影评。

目录

  1. Mahout的模型介绍
  2. R语言模型实现
  3. 算法实现的原理–矩阵变换
  4. 算法总结
  5. 参考资料

1. Mahout的模型介绍

Mahout版本

 <dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.5</version>
</dependency>

Mahout程序写法

public class UserBaseCFMain {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws IOException, TasteException {
        String file = "metadata/data/testCF.csv";
        DataModel model = new FileDataModel(new File(file));
        UserSimilarity user = new EuclideanDistanceSimilarity(model);
        NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
        Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
        LongPrimitiveIterator iter = model.getUserIDs();

        while (iter.hasNext()) {
            long uid = iter.nextLong();
            List list = r.recommend(uid, RECOMMENDER_NUM);
            System.out.printf("uid:%s", uid);
            for (RecommendedItem ritem : list) {
                System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
            }
            System.out.println();
        }
    }
} 

推荐结果:

uid:1(104,4.250000)(106,4.000000)
uid:2(105,3.956999)
uid:3(103,3.185407)(102,2.802432)
uid:4(102,3.000000)
uid:5 

2. R语言模型实现

  • 1). 建立数据模型
  • 2). 欧氏距离相似度算法
  • 3). 最紧邻算法
  • 4). 推荐算法
  • 5). 运行程序

由于时间仓促,R的代码中,有不少for循环影响性能,请暂时跳过!

1). 建立数据模型

FileDataModel<-function(file){
data<-read.csv(file,header=FALSE)
names(data)<-c("uid","iid","pref")

user <- unique(data$uid)
item <- unique(sort(data$iid))
uidx <- match(data$uid, user)
iidx <- match(data$iid, item)
M <- matrix(0, length(user), length(item))
i <- cbind(uidx, iidx, pref=data$pref)
for(n in 1:nrow(i)){
M[i[n,][1],i[n,][2]]<-i[n,][3]
}
dimnames(M)[[2]]<-item
M
}

2). 欧氏距离相似度算法

EuclideanDistanceSimilarity<-function(M){
row<-nrow(M)
s<-matrix(0, row, row)
for(z1 in 1:row){
for(z2 in 1:row){
if(z1<z2){< span="">
num<-intersect(which(M[z1,]!=0),which(M[z2,]!=0)) #可计算的列

sum<-0
for(z3 in num){
sum<-sum+(M[z1,][z3]-M[z2,][z3])^2
}

s[z2,z1]<-length(num)/(1+sqrt(sum))

if(s[z2,z1]>1) s[z2,z1]<-1 #标准化
if(s[z2,z1]< -1) s[z2,z1]<- -1 #标准化

#print(paste(z1,z2));print(num);print(sum)
}
}
}
#补全三角矩阵
ts<-t(s)
w<-which(upper.tri(ts))
s[w]<-ts[w]
s
}3). 最紧邻算法NearestNUserNeighborhood<-function(S,n){
row<-nrow(S)
neighbor<-matrix(0, row, n)
for(z1 in 1:row){
for(z2 in 1:n){
m<-which.max(S[,z1])
#       print(paste(z1,z2,m,'\n'))
neighbor[z1,][z2]<-m
S[,z1][m]=0
}
}
neighbor
}

4). 推荐算法

UserBasedRecommender<-function(uid,n,M,S,N){
row<-ncol(N)
col<-ncol(M)
r<-matrix(0, row, col)
N1<-N[uid,]
for(z1 in 1:length(N1)){
num<-intersect(which(M[uid,]==0),which(M[N1[z1],]!=0)) #可计算的列
#     print(num)

for(z2 in num){
#       print(paste("for:",z1,N1[z1],z2,M[N1[z1],z2],S[uid,N1[z1]]))
r[z1,z2]=M[N1[z1],z2]*S[uid,N1[z1]]
}
}

sum<-colSums(r)
s2<-matrix(0, 2, col)
for(z1 in 1:length(N1)){
num<-intersect(which(colSums(r)!=0),which(M[N1[z1],]!=0))
for(z2 in num){
s2[1,][z2]<-s2[1,][z2]+S[uid,N1[z1]]
s2[2,][z2]<-s2[2,][z2]+1
}
}

s2[,which(s2[2,]==1)]=10000
s2<-s2[-2,]

r2<-matrix(0, n, 2)
rr<-sum/s2
item <-dimnames(M)[[2]]
for(z1 in 1:n){
w<-which.max(rr)
if(rr[w]>0.5){
r2[z1,1]<-item[which.max(rr)]
r2[z1,2]<-as.double(rr[w])
rr[w]=0
}
}
r2
}

5). 运行程序

FILE<-"testCF.csv"
NEIGHBORHOOD_NUM<-2
RECOMMENDER_NUM<-3

M<-FileDataModel(FILE)
S<-EuclideanDistanceSimilarity(M)
N<-NearestNUserNeighborhood(S,NEIGHBORHOOD_NUM)

R1<-UserBasedRecommender(1,RECOMMENDER_NUM,M,S,N);R1
##      [,1]  [,2]  
## [1,] "104" "4.25"
## [2,] "106" "4"   
## [3,] "0"   "0" 

R2<-UserBasedRecommender(2,RECOMMENDER_NUM,M,S,N);R2
##      [,1]  [,2]
## [1,] "105" "3.95699903407931"
## [2,] "0"   "0"
## [3,] "0"   "0"

R3<-UserBasedRecommender(3,RECOMMENDER_NUM,M,S,N);R3
##      [,1]  [,2]
## [1,] "103" "3.18540697329411"
## [2,] "102" "2.80243217111765"
## [3,] "0"   "0"

R4<-UserBasedRecommender(4,RECOMMENDER_NUM,M,S,N);R4
##      [,1]  [,2]
## [1,] "102" "3" 
## [2,] "0"   "0" 
## [3,] "0"   "0"

R5<-UserBasedRecommender(5,RECOMMENDER_NUM,M,S,N);R5
##      [,1] [,2]
## [1,]    0    0
## [2,]    0    0
## [3,]    0    0

3. 算法实现的原理–矩阵变换

所谓协同过滤算法,其实就是矩阵变换的结果!!请大家下面留意矩阵操作! 1). 原始数据

 1,101,5.0
  1,102,3.0
  1,103,2.5
  2,101,2.0
  2,102,2.5
  2,103,5.0
  2,104,2.0
  3,101,2.5
  3,104,4.0

2). 矩阵转换

read.csv()->data.frame()->matrix()

 101 102 103 104 105 106 107
[1,] 5.0 3.0 2.5 0.0 0.0   0   0
[2,] 2.0 2.5 5.0 2.0 0.0   0   0
[3,] 2.5 0.0 0.0 4.0 4.5   0   5
[4,] 5.0 0.0 3.0 4.5 0.0   4   0
[5,] 4.0 3.0 2.0 4.0 3.5   4   0 

3). 欧氏相似矩阵转换

 [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.0000000 0.6076560 0.2857143 1.0000000 1.0000000
[2,] 0.6076560 0.0000000 0.6532633 0.5568464 0.7761999
[3,] 0.2857143 0.6532633 0.0000000 0.5634581 1.0000000
[4,] 1.0000000 0.5568464 0.5634581 0.0000000 1.0000000
[5,] 1.0000000 0.7761999 1.0000000 1.0000000 0.0000000 

4). 最近邻矩阵

 top1 top2
[1,]    4    5
[2,]    5    3
[3,]    5    2
[4,]    1    5
[5,]    1    3 

5). 以R1为例的推荐矩阵

 101  102  103  104  105  106  107
   4    0    0    0  4.5  0.0    4    0
   5    0    0    0  4.0  3.5    4    0 

6). 以R1为例的推荐结果

 推荐物品  物品得分
[1,] "104"    "4.25"
[2,] "106"    "4" 

4. 算法总结

我这里只是用R语言现实了Mahout的基于“用户的”,“欧氏距离”,“最近邻”的协同过滤算法。实现过程中发现,Mahout做各种算法时,都有自己的优化。

比如,算欧氏距离时,并不是标准的

similar = 1/(1+sqrt( (a-b)2 + (a-c)2 ))

而是改进的算法

similar = n/(1+sqrt( (a-b)2 + (a-c)2 )) 
  1. n为b,c的个数
  2. similar>1 => similar=1
  3. similar<-1 => similar=-1

从而更能优化结果。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-11-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

利用 Python、SciKit 和文本分类来构建客户行为描述模型

了解如何根据已购买产品中描述的文本属性来构建客户行为描述模型。SciKit 是一个强大的基于 Python 的机器学习包,可用于模型构造和评估,您可以利用它...

2855
来自专栏专知

机器翻译新时代:Facebook 开源无监督机器翻译模型和大规模训练语料

【导读】基于深度学习的机器翻译往往需要数量非常庞大的平行语料,这一前提使得当前最先进的技术无法被有效地用于那些平行语料比较匮乏的语言之间。为了解决这一问题,Fa...

42611
来自专栏机器之心

教程 | 如何保持运动小车上的旗杆屹立不倒?TensorFlow利用A3C算法训练智能体玩CartPole游戏

本教程面向所有对强化学习感兴趣的人,不会涉及太深的机器学习基础,但主题中涵盖了高级策略网络和价值网络的相关知识。此外,我建议阅读 Voldymyr Mnih 的...

863
来自专栏数据科学与人工智能

【Python环境】利用 Python、SciKit 和文本分类来实现行为分析

简介 几乎所有人都会购物。从基本的必需品(比如食品)到娱乐产品(比如音乐专辑),我们会购买各种各样的物品。当购物时,我们不仅会寻找在生活中用到的东西,也会在表达...

22710
来自专栏人工智能LeadAI

决策树会有哪些特性?

决策树(Decision Tree)是机器学习中最常见的算法, 因为决策树的结果简单,容易理解, 因此应用超级广泛, 但是机器学习的专家们在设计决策树的时候会考...

2917
来自专栏AI科技评论

简简单单,用 LSTM 创造一个写诗机器人

AI 科技评论按:人们已经给神经网络找到了越来越多的事情做,比如画画和写诗,微软的小冰都已经出版了一本诗集了。而其实训练一个能写诗的神经网络并不难,Automa...

2867
来自专栏量化投资与机器学习

【年度系列】监督学习标签在股市中的应用(代码+书籍)

由于低信噪比和非平稳的价格分布,预测未来股票价格走势是一件十分困难的事。现在流行的机器学习算法通常会给你带来不怎么满意的结果。

876
来自专栏机器学习算法与Python学习

入门必看 | 深度Q-learning简介【RL系列】

今天,我们将构建一个深度Q网络,为环境中的agent实现一个可以获取环境状态信息以及近似Q-value的神经网络。

664
来自专栏积累沉淀

数据挖掘算法之贝叶斯网络

贝叶斯网络 序 上上周末写完上篇朴素贝叶斯分类后,连着上了七天班,而且有四天都是晚上九点下班,一直没有多少时间学习贝叶斯网络,所以更新慢了点,利用清明节两天假期...

57010
来自专栏ATYUN订阅号

Python机器学习的练习八:异常检测和推荐系统

在这篇文章中,将会涉及两个话题——异常检测和推荐系统,我们将使用高斯模型实现异常检测算法并且应用它检测网络上的故障服务器。我们还将看到如何使用协同过滤创建推荐系...

7357

扫码关注云+社区