用Python开始机器学习:文本特征抽取与向量化

假设我们刚看完诺兰的大片《星际穿越》,设想如何让机器来自动分析各位观众对电影的评价到底是“赞”(positive)还是“踩”(negative)呢?

这类问题就属于情感分析问题。这类问题处理的第一步,就是将文本转换为特征。

因此,这章我们只学习第一步,如何从文本中抽取特征,并将其向量化。

由于中文的处理涉及到分词问题,本文用一个简单的例子来说明如何使用Python的机器学习库,对英文进行特征提取。

1、数据准备

Python的sklearn.datasets支持从目录读取所有分类好的文本。不过目录必须按照一个文件夹一个标签名的规则放好。比如本文使用的数据集共有2个标签,一个为“net”,一个为“pos”,每个目录下面有6个文本文件。目录如下所示: neg 1.txt 2.txt ......

pos 1.txt 2.txt ....

12个文件的内容汇总起来如下所示:

[plain] view plaincopy

  1. neg:
  2. shit.
  3. waste my money.
  4. waste of money.
  5. sb movie.
  6. waste of time.
  7. a shit movie.
  8. pos:
  9. nb! nb movie!
  10. nb!
  11. worth my money.
  12. I love this movie!
  13. a nb movie.
  14. worth it!

2、文本特征

如何从这些英文中抽取情感态度而进行分类呢?

最直观的做法就是抽取单词。通常认为,很多关键词能够反映说话者的态度。比如上面这个简单的数据集,很容易发现,凡是说了“shit”的,就一定属于neg类。

当然,上面数据集是为了方便描述而简单设计的。现实中一个词经常会有穆棱两可的态度。但是仍然有理由相信,某个单词在neg类中出现的越多,那么他表示neg态度的概率越大。

同样我们注意到有些单词对情感分类是毫无意义的。比如上述数据中的“of”,“I”之类的单词。这类词有个名字,叫“Stop_Word“(停用词)。这类词是可以完全忽略掉不做统计的。显然忽略掉这些词,词频记录的存储空间能够得到优化,而且构建速度也更快。

把每个单词的词频作为重要的特征也存在一个问题。比如上述数据中的”movie“,在12个样本中出现了5次,但是出现正反两边次数差不多,没有什么区分度。而”worth“出现了2次,但却只出现在pos类中,显然更具有强烈的刚晴色彩,即区分度很高。

因此,我们需要引入TF-IDF(Term Frequency-Inverse Document Frequency,词频和逆向文件频率)对每个单词做进一步考量。

TF词频)的计算很简单,就是针对一个文件t,某个单词Nt 出现在该文档中的频率。比如文档“I love this movie”,单词“love”的TF为1/4。如果去掉停用词“I"和”it“,则为1/2。

IDF逆向文件频率)的意义是,对于某个单词t,凡是出现了该单词的文档数Dt,占了全部测试文档D的比例,再求自然对数。

比如单词“movie“一共出现了5次,而文档总数为12,因此IDF为ln(5/12)。

很显然,IDF是为了凸显那种出现的少,但是占有强烈感情色彩的词语。比如“movie”这样的词的IDF=ln(12/5)=0.88,远小于“love”的IDF=ln(12/1)=2.48。

TF-IDF就是把二者简单的乘在一起即可。这样,求出每个文档中,每个单词的TF-IDF,就是我们提取得到的文本特征值。

3、向量化

有了上述基础,就能够将文档向量化了。我们先看代码,再来分析向量化的意义:

[python] view plaincopy

  1. # -*- coding: utf-8 -*-
  2. import scipy as sp
  3. import numpy as np
  4. from sklearn.datasets import load_files
  5. from sklearn.cross_validation import train_test_split
  6. from sklearn.feature_extraction.text import TfidfVectorizer
  7. '''''加载数据集,切分数据集80%训练,20%测试'''
  8. movie_reviews = load_files('endata')
  9. doc_terms_train, doc_terms_test, y_train, y_test\
  10. = train_test_split(movie_reviews.data, movie_reviews.target, test_size = 0.3)
  11. '''''BOOL型特征下的向量空间模型,注意,测试样本调用的是transform接口'''
  12. count_vec = TfidfVectorizer(binary = False, decode_error = 'ignore',\
  13. stop_words = 'english')
  14. x_train = count_vec.fit_transform(doc_terms_train)
  15. x_test = count_vec.transform(doc_terms_test)
  16. x = count_vec.transform(movie_reviews.data)
  17. y = movie_reviews.target
  18. print(doc_terms_train)
  19. print(count_vec.get_feature_names())
  20. print(x_train.toarray())
  21. print(movie_reviews.target)

运行结果如下:

[b'waste of time.', b'a shit movie.', b'a nb movie.', b'I love this movie!', b'shit.', b'worth my money.', b'sb movie.', b'worth it!'] ['love', 'money', 'movie', 'nb', 'sb', 'shit', 'time', 'waste', 'worth'] [[ 0. 0. 0. 0. 0. 0. 0.70710678 0.70710678 0. ] [ 0. 0. 0.60335753 0. 0. 0.79747081 0. 0. 0. ] [ 0. 0. 0.53550237 0.84453372 0. 0. 0. 0. 0. ] [ 0.84453372 0. 0.53550237 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 1. 0. 0. 0. ] [ 0. 0.76642984 0. 0. 0. 0. 0. 0. 0.64232803] [ 0. 0. 0.53550237 0. 0.84453372 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. 0. 0. 1. ]] [1 1 0 1 0 1 0 1 1 0 0 0]

python输出的比较混乱。我这里做了一个表格如下:

从上表可以发现如下几点:

1、停用词的过滤。

初始化count_vec的时候,我们在count_vec构造时传递了stop_words = 'english',表示使用默认的英文停用词。可以使用count_vec.get_stop_words()查看TfidfVectorizer内置的所有停用词。当然,在这里可以传递你自己的停用词list(比如这里的“movie”)

2、TF-IDF的计算。

这里词频的计算使用的是sklearn的TfidfVectorizer。这个类继承于CountVectorizer,在后者基本的词频统计基础上增加了如TF-IDF之类的功能。

我们会发现这里计算的结果跟我们之前计算不太一样。因为这里count_vec构造时默认传递了max_df=1,因此TF-IDF都做了规格化处理,以便将所有值约束在[0,1]之间。

3、count_vec.fit_transform的结果是一个巨大的矩阵。我们可以看到上表中有大量的0,因此sklearn在内部实现上使用了稀疏矩阵。本例子数据较小。如果读者有兴趣,可以试试机器学习科研工作者使用的真实数据,来自康奈尔大学:http://www.cs.cornell.edu/people/pabo/movie-review-data/。这个网站提供了很多数据集,其中有几个2M左右的数据库,正反例700个左右。这样的数据规模也不算大,1分钟内还是可以跑完的,建议大家试一试。不过要注意这些数据集可能存在非法字符问题。所以在构造count_vec时,传入了decode_error = 'ignore',以忽略这些非法字符。

上表的结果,就是训练8个样本的8个特征的一个结果。这个结果就可以使用各种分类算法进行分类了。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-11-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

Apache Spark中的决策树

原文地址:https://dzone.com/articles/decision-trees-in-apache-spark

8188
来自专栏杂七杂八

xgboost初识

XGBoost使用 原始数据 数据介绍 鸢尾花数据集是由杰出的统计学家R.A.Fisher在20世纪30年代中期创建的,它被公认为用于数据挖掘的最著名的数据集。...

2934
来自专栏AILearning

【Scikit-Learn 中文文档】新异类和异常值检测 - 无监督学习 - 用户指南 | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/modules/outlier_detection.html 英文文...

6227
来自专栏小小挖掘机

数据城堡参赛代码实战篇(六)---使用sklearn进行数据标准化及参数寻优

小编们最近参加了数据城堡举办的“大学生助学金精准资助预测”比赛,分组第19名的成绩进入了复赛,很激动有木有!在上一篇文章中,小编介绍了一下我们准备使用的分类算法...

3327
来自专栏Fred Liang

gg 小组种子杯初赛报告

队员: 柳泓鑫 梁志博 洪志远 AUC: 0.7566 2017年10月1日 Github:https://github.com/ver217/seedc...

642
来自专栏从流域到海域

Decision Trees in Apache Spark (Apache Spark中的决策树)

Decision Trees in Apache Spark 原文作者:Akash Sethi 原文地址:https://dzone.com/article...

1866
来自专栏mathor

搜索(4)

794
来自专栏WD学习记录

牛客网 连续子数组的最大和

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候...

562
来自专栏磐创AI技术团队的专栏

实用 | 分享一个决策树可视化工具

【磐创AI导读】:这篇文章希望跟大家分享一个可视化决策树或者随机森林的工具。这可以帮助我们更好的去理解或解释我们的模型。想要获取更多的机器学习、深度学习资源。欢...

621
来自专栏机器学习从入门到成神

XGboost数据比赛实战之调参篇(完整流程)

这一篇博客的内容是在上一篇博客Scikit中的特征选择,XGboost进行回归预测,模型优化的实战的基础上进行调参优化的,所以在阅读本篇博客之前,请先移步看一下...

1.6K8

扫码关注云+社区