Python机器学习从原理到实践(2):数据拟合与广义线性回归

机器学习中的预测问题通常分为2类:回归分类

简单的说回归就是预测数值,而分类是给数据打上标签归类。

本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。

本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。

拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。

代码如下:

[python] view plaincopy

  1. import matplotlib.pyplot as plt
  2. import numpy as np
  3. import scipy as sp
  4. from scipy.stats import norm
  5. from sklearn.pipeline import Pipeline
  6. from sklearn.linear_model import LinearRegression
  7. from sklearn.preprocessing import PolynomialFeatures
  8. from sklearn import linear_model
  9. ''''' 数据生成 '''
  10. x = np.arange(0, 1, 0.002)
  11. y = norm.rvs(0, size=500, scale=0.1)
  12. y = y + x**2
  13. ''''' 均方误差根 '''
  14. def rmse(y_test, y):
  15. return sp.sqrt(sp.mean((y_test - y) ** 2))
  16. ''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''
  17. def R2(y_test, y_true):
  18. return 1 - ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
  19. ''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''
  20. def R22(y_test, y_true):
  21. y_mean = np.array(y_true)
  22. y_mean[:] = y_mean.mean()
  23. return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true)
  24. plt.scatter(x, y, s=5)
  25. degree = [1,2,100]
  26. y_test = []
  27. y_test = np.array(y_test)
  28. for d in degree:
  29. clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
  30. ('linear', LinearRegression(fit_intercept=False))])
  31. clf.fit(x[:, np.newaxis], y)
  32. y_test = clf.predict(x[:, np.newaxis])
  33. print(clf.named_steps['linear'].coef_)
  34. print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f' %
  35. (rmse(y_test, y),
  36. R2(y_test, y),
  37. R22(y_test, y),
  38. clf.score(x[:, np.newaxis], y)))
  39. plt.plot(x, y_test, linewidth=2)
  40. plt.grid()
  41. plt.legend(['1','2','100'], loc='upper left')
  42. plt.show()

该程序运行的显示结果如下:

[-0.16140183 0.99268453] rmse=0.13, R2=0.82, R22=0.58, clf.score=0.82

[ 0.00934527 -0.03591245 1.03065829] rmse=0.11, R2=0.88, R22=0.66, clf.score=0.88 [ 6.07130354e-02 -1.02247150e+00 6.66972089e+01 -1.85696012e+04 ......

-9.43408707e+12 -9.78954604e+12 -9.99872105e+12 -1.00742526e+13 -1.00303296e+13 -9.88198843e+12 -9.64452002e+12 -9.33298267e+12 -1.00580760e+12]

rmse=0.10, R2=0.89, R22=0.67, clf.score=0.89

显示出的coef_就是多项式参数。如1次拟合的结果为

y = 0.99268453x -0.16140183

这里我们要注意这几点:

1、误差分析

做回归分析,常用的误差主要有均方误差根(RMSE)和R-平方(R2)。

RMSE是预测值与真实值的误差平方根的均值。这种度量方法很流行(Netflix机器学习比赛的评价方法),是一种定量的权衡方法。

R2方法是将预测值跟只使用均值的情况下相比,看能好多少。其区间通常在(0,1)之间。0表示还不如什么都不预测,直接取均值的情况,而1表示所有预测跟真实结果完美匹配的情况。

R2的计算方法,不同的文献稍微有不同。如本文中函数R2是依据scikit-learn官网文档实现的,跟clf.score函数结果一致。

而R22函数的实现来自Conway的著作《机器学习使用案例解析》,不同在于他用的是2个RMSE的比值来计算R2。

我们看到多项式次数为1的时候,虽然拟合的不太好,R2也能达到0.82。2次多项式提高到了0.88。而次数提高到100次,R2也只提高到了0.89。

2、过拟合

使用100次方多项式做拟合,效果确实是高了一些,然而该模型的据测能力却极其差劲。

而且注意看多项式系数,出现了大量的大数值,甚至达到10的12次方。

这里我们修改代码,将500个样本中的最后2个从训练集中移除。然而在测试中却仍然测试所有500个样本。

clf.fit(x[:498, np.newaxis], y[:498])

这样修改后的多项式拟合结果如下:

[-0.17933531 1.0052037 ] rmse=0.12, R2=0.85, R22=0.61, clf.score=0.85 [-0.01631935 0.01922011 0.99193521] rmse=0.10, R2=0.90, R22=0.69, clf.score=0.90

...

rmse=0.21, R2=0.57, R22=0.34, clf.score=0.57

仅仅只是缺少了最后2个训练样本,红线(100次方多项式拟合结果)的预测发生了剧烈的偏差,R2也急剧下降到0.57。

而反观1,2次多项式的拟合结果,R2反而略微上升了。

这说明高次多项式过度拟合了训练数据,包括其中大量的噪音,导致其完全丧失了对数据趋势的预测能力。前面也看到,100次多项式拟合出的系数数值无比巨大。人们自然想到通过在拟合过程中限制这些系数数值的大小来避免生成这种畸形的拟合函数。

其基本原理是将拟合多项式的所有系数绝对值之和(L1正则化)或者平方和(L2正则化)加入到惩罚模型中,并指定一个惩罚力度因子w,来避免产生这种畸形系数。

这样的思想应用在了岭(Ridge)回归(使用L2正则化)、Lasso法(使用L1正则化)、弹性网(Elastic net,使用L1+L2正则化)等方法中,都能有效避免过拟合。更多原理可以参考相关资料。

下面以岭回归为例看看100次多项式的拟合是否有效。将代码修改如下:

clf = Pipeline([('poly', PolynomialFeatures(degree=d)), ('linear', linear_model.Ridge ())]) clf.fit(x[:400, np.newaxis], y[:400])

结果如下:

[ 0. 0.75873781] rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78 [ 0. 0.35936882 0.52392172] rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87 [ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01 1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02 ...... 3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11 1.46657377e-11] rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90

可以看到,100次多项式的系数参数变得很小。大部分都接近于0.

另外值得注意的是,使用岭回归之类的惩罚模型后,1次和2次多项式回归的R2值可能会稍微低于基本线性回归。

然而这样的模型,即使使用100次多项式,在训练400个样本,预测500个样本的情况下不仅有更小的R2误差,而且还具备优秀的预测能力。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-11-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

Python机器学习:数据拟合与广义线性回归

机器学习中的预测问题通常分为2类:回归与分类。 简单的说回归就是预测数值,而分类是给数据打上标签归类。 本文讲述如何用Python进行基本的数据拟合,以及如何对...

3006
来自专栏机器学习算法原理与实践

特征工程之特征表达

          在特征工程之特征选择中,我们讲到了特征选择的一些要点。本篇我们继续讨论特征工程,不过会重点关注于特征表达部分,即如果对某一个特征的具体表现形...

813
来自专栏数据科学与人工智能

【陆勤阅读】机器学习算法基础知识

可利用的算法非常之多。困难之处在于既有不同种类的方法,也有对这些方法的扩展。这导致很快就难以区分到底什么才是正统的算法。在这个帖子里,我希望给你两种方式来思考和...

2027
来自专栏算法channel

机器学习逻辑回归:原理解析及代码实现

? 前到现在为止,我们通过大约1周的时间初步对机器学习是怎么一回事算是有一些基本的理解了,从最基本的线性回归入手,讨论了如何在拿到一堆数据时,先进行数据预处理...

2657
来自专栏SIGAI学习与实践平台

关于感受野的总结

感受野是卷积神经网络里面最重要的概念之一,为了更好地理解卷积神经网络结构,甚至自己设计卷积神经网络,对于感受野的理解是必备的。

3162
来自专栏大数据挖掘DT机器学习

R语言与机器学习(分类算法)神经网络

人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络...

4425
来自专栏智能算法

初识支持向量机原理

支持向量机作为机器学习中最为难于理解的算法,小编将以三篇的篇幅去讲解小编自己理解的SVM算法。主要包括:初识支持向量机原理、SVM如何解决线性不可分、SVM实践...

3136
来自专栏智能算法

机器学习三人行(系列五)----你不了解的线性模型(附代码)

到目前为止,我们已经将机器学习模型和他们的训练算法大部分视为黑盒子。 如果你经历了前面系列的一些操作,如回归系统、数字图像分类器,甚至从头开始建立一个垃圾邮件分...

35916
来自专栏人工智能LeadAI

TensorFlow从0到1 | 第九章“驱魔”之反向传播大法

上一篇8 万能函数的形态:人工神经网络解封了人工神经网络,如果用非常简短的语言来概括它,我更喜欢维基百科的诠释: 人工神经网络是一种模仿生物神经网络(动物的中...

2698
来自专栏SeanCheney的专栏

《Scikit-Learn与TensorFlow机器学习实用指南》 第4章 训练模型

在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱来处理。如果你动手练习过前几章的一些示例,就能惊奇地发现优化回归系统、改进数字图像的分类器、甚至可以零基...

592

扫码关注云+社区