中国团队夺得MegaFace百万人脸识别冠军,精度98%再创记录,论文代码+数据全开源

MegaFace数据集

网络结构

首先,我们尝试在人脸识别的任务上找到一个优秀的网络结构。

3.1 网络输入设定

在我们所有的实验当中,都根据人脸的 5 个关键点进行对齐,并且切割设置大小到 112x112。因为这个图片大小是 ImageNet 输入的 1/4,我们考虑取消常见网络结构起始的降分辨率操作,即替换(conv77-stride22)为(conv33-stride11)。我们这个输入放大版的网络结构标记为 L。

3.2 网络输出设定

此处输出指代特征向量这一层。我们实验了多种从最后一个卷积层之后如何连接到特征向量的方法,发现了最优的结构代号 E,即 (Convolution -> BN -> Dropout -> FullyConnected -> BN),更多的选择和实验结果可以参考原文 [1]。

3.3 ResNet 单元设定

在ResNet 中,我们发现 3*BN[5] 的单元相比原始实现[6]和 Identity Mapping[7]的 unit 性能更好,标记为-IR

图 1: Improved residual unit: BN-Conv-BN-PReLu-Conv-BN

3.4 评测

我们在 VGG2 数据集上用 Softmax 测试了不同网络骨干和不同配置,得到以下结果:

表 1: Accuracy (%),speed (ms) and model size (MB) comparison between different backbones (Softmax@VGG2)

据此,我们选择 LResNet100E-IR作为我们的主力网络骨干,因为它出色的性能和相对不大的开销。

Loss Functions

4.1 Softmax

损失函数是另一个提升识别精度的关键工作,在大家极力压榨网络骨干结构换取性能提升的时候,回头再来看损失函数这个网络训练的指挥棒,会有更多的发现。做为最常见的分类损失 Softmax,其定义如下:

Softmax 是最常见的人脸识别损失函数,然而,Softmax 不会显式的优化类间和类内距离的,所以通常不会有太好的性能

4.2 Triplet Loss

Triplet Loss 作为一种 Metric Learning,也在人脸识别中广泛使用。定义为:

相比 Softmax,其特点是可以方便训练大规模 ID(百万,千万)的数据集,不受显存的限制。但是相应的,因为它的关注点过于局部,使得性能无法达到最佳且训练需要的周期非常长。

4.3 SphereFace

由于 Tripelet Loss 训练困难,人们逐渐寻求结合 Metric Learning 思想来改进 Softmax 的思路,其中 SphereFace[2] 是其中的佼佼者,作为 17 年提出的一种方法,在当时达到了 state-of-the-art。其定义如下:

在具体实现中,为了避免加入的 margin(即 m) 过大,引入了新的超参 λ,和 Softmax 一起联合训练。

那么这里的 margin 具体是什么? 包括下述的几种算法都会提到 margin。我们从 Softmax 说起,参考上一节他的公式

为了方便计算,我们让 bias=0,则全联接的 WX 可以表示为

θ 表示 WX 的夹角,归一化 W 后:

对特定的 X,|| X || 是确定的,所以这时 Softmax 优化的其实就是 cos 值,或 者说他们的夹角 θ

在这样的 Softmax 中,类和类之间的界限只是一条线。这样会产生的问题是: 落在边界附近的点会让整个模型的泛化能力比较差。为了解决这个问题,作者就想到了让这个界限变大一些,让不同类之间的点尽量远。在投影的夹角上加入一个 margin 可以达到这个目的,如下图:

图 2: sphereface

可以看到在这样做之后,即使是类间距离最近的点也有一定的 margin。在训练中,相同类的人脸图片会向着自己的 w − vector 压紧。

4.4 Additive Cosine Margin

最近,在 [3],[4] 中,作者提出了一种在 Cosine 值上加入 Margin 的策略,定义如下:

模型获得了比 [2] 更好的性能,同时实现很方便,也摆脱了和 Softmax 联合训练的困扰,在训练起始阶段不再有收敛方面的问题。

4.5 Additive Angular Margin

我们 [1] 提出了在角度上增加固定值的 Margin,在 Cosine Margin 的基础上,更具有几何 (角度) 解释性并且获得了更好的性能,定义如下:

这里我们同时 normalize 了 weight(到 1) 和 feature(到 s,默认 64),则 (Cosine Margin 也同理):

图 3: ArcFace 几何解释

4.6 对比

以二元分类举例,以上各算法的 decision boundary 如下:

表 2: Decision boundaries for class 1 under binary classification case

为了方便对比和找出算法优劣的原因,我们也比较了不同 Margin 下目标 Logit 的值:

图4: Target logit analysis

评测

4.7.1 验证集

首先,我们对 3 个 1 比 1 比对的验证集进行测试,网络结构为 LResNet100E- IR,训练数据集 Refined-MS1M,所有结果都为单模型。

表 3

4.7.2 MegaFace 百万人脸测试

需要声明的是,我们对 MegaFace 干扰集做了仔细的比对和清理 (标记 (R)),这样获得的性能才是模型本来的性能,也移除了噪音带来的随机性。参考 SphereFace 和 ArcFace(m=0.4) 在移除噪音前后的性能对比。真实性能 ArcFace(m=0.4) 是好于 SphereFace,但是在移除噪音之前正好相反。

表 4

在上面的实验基础上,我们做了更严格的实验:移除所有训练集合中和 probe-set(FaceScrub) 足够相似的人物,得到以下结果:

表 5

可以看到移除和 probe-set 重复的训练集人物还是有一定影响的,这也符合常理。另外我们也可以看到 ArcFace 和 CosineFace 受到的影响较小。

开源库 InsightFace

在我们的开源代码 InsightFace[0] 中,我们提供了 ArcFace 的官方实现,以及其他一系列 Loss 的第三方实现,并支持一键训练。利用项目中提供的 Refined-MS1M 训练数据集,可以轻松达到论文中标称的准确率值。

5.1 安装

在 Linux 下两行命令即可完成安装:

pip install six scipy scikit−learn opencv−python scikit −image easydict mxnet−cu80

git clone https://github.com/deepinsight/insightface.git

5.2 训练

一行命令即可获得最佳的模型:

CUDA_VISIBLE_DEVICES= ’0 ,1 ,2 ,3 ’ python −u train_softmax . py −−network r100 −−l −−prefix ../model−r100

引用 (简单版)

[0] https://github.com/deepinsight/insightface

[1] Additive Angular Margin Loss for Deep Face Recognition: Jiankang Deng*,Jia Guo* and Stefanos Zafeiriou

[2] SphereFace: Deep Hypersphere Embedding for Face Recognition: Liu,Weiyang and Wen,Yandong and Yu,Zhiding and Li,Ming and Raj,Bhiksha and Song,Le

[3] CosFace: Large Margin Cosine Loss for Deep Face Recognition: Wang,Hao and Wang,Yitong and Zhou,Zheng and Ji,Xing and Li,Zhifeng and Gong,Dihong and Zhou,Jingchao and Liu,Wei

[4] Additive Margin Softmax for Face Veri cation: Wang,Feng and Liu,Weiyang and Liu,Haijun and Cheng,Jian

[5] Deep pyramidal residual networks: Han,Dongyoon and Kim,Ji- whan and Kim,Junmo

[6] Deep Residual Learning for Image Recognition: Kaiming He,Xi- angyu Zhang,Shaoqing Ren,Jian Sun

[7] Identity Mappings in Deep Residual Networks: Kaiming He,Xi- angyu Zhang,Shaoqing Ren,Jian Sun

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2018-03-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Phoenix的Android之旅

Java 集合 Vector

List有三种实现,ArrayList, LinkedList, Vector, 它们的区别在于, ArrayList是非线程安全的, Vector则是线程安全...

672
来自专栏聊聊技术

原 初学图论-Kahn拓扑排序算法(Kah

2888
来自专栏刘君君

JDK8的HashMap源码学习笔记

3068
来自专栏xingoo, 一个梦想做发明家的程序员

AOE关键路径

这个算法来求关键路径,其实就是利用拓扑排序,首先求出,每个节点最晚开始时间,再倒退求每个最早开始的时间。 从而算出活动最早开始的时间和最晚开始的时间,如果这两个...

2527
来自专栏MelonTeam专栏

ArrayList源码完全分析

导语: 这里分析的ArrayList是使用的JDK1.8里面的类,AndroidSDK里面的ArrayList基本和这个一样。 分析的方式是逐个API进行解析 ...

4519
来自专栏xingoo, 一个梦想做发明家的程序员

Spark踩坑——java.lang.AbstractMethodError

百度了一下说是版本不一致导致的。于是重新检查各个jar包,发现spark-sql-kafka的版本是2.2,而spark的版本是2.3,修改spark-sql-...

1210
来自专栏java闲聊

JDK1.8 ArrayList 源码解析

当运行 ArrayList<Integer> list = new ArrayList<>() ; ,因为它没有指定初始容量,所以它调用的是它的无参构造

1192
来自专栏拭心的安卓进阶之路

Java 集合深入理解(12):古老的 Vector

今天刮台风,躲屋里看看 Vector ! 都说 Vector 是线程安全的 ArrayList,今天来根据源码看看是不是这么相...

2447
来自专栏xingoo, 一个梦想做发明家的程序员

20120918-向量实现《数据结构与算法分析》

#include <iostream> #include <list> #include <string> #include <vector> #include...

1736
来自专栏开发与安全

算法:AOV网(Activity on Vextex Network)与拓扑排序

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex ...

2607

扫码关注云+社区