开发 | 深度学习训练时 GPU 温度过高?输入这几行命令就能迅速降温

AI科技评论按:本文作者胡智豪,原载于作者个人博客,AI科技评论经授权发布。

新买回来的不带水冷公版GPU,在满负载运行的时候,温度从室温马上飙升到85度,而且模型训练不是几分钟完事,很有可能要长期保持在高温状态下运行,让如此昂贵的GPU一直发烧真是让人太心疼!

首先得到知乎上一位朋友的文章启发:从零开始组装深度学习平台(GPU散热)。具体地址:

http://t.cn/RK9wyBK

这篇文章写的是在ubuntu X server环境下,通过修改nvidia-settings来修改GPU风扇速度,因为默认的nvidia-settings设置是,即使GPU在计算的时候温度已经达到85度,风扇速度最高不会超过70%,这样就无法很好地为GPU进行散热,因此需要手动修改GPU风扇速度。

注,以下设置都是针对linux系统的GPU设置,windows的朋友请搜索相关文章。

一、如果你有显示器(X server)

可以完全按照上面提到的文章《从零开始组装深度学习平台》操作,这里贴出关键步骤为:

1. 修改/etc/X11/xorg.cong文件

sudo nano /etc/X11/xorg.conf

2. 在Section "Device"里面加入 Option "Coolbits" "4"

Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA" Option "Coolbits" "4" EndSection

3. 重启电脑sudo reboot

4. 输入:

nvidia-settings -a "[gpu:0]/GPUFanControlState=1" -a "[fan:0]/GPUTargetFanSpeed=100"

这里GPUTargetFanSpeed=100就是风扇的速度, 100就是风扇运行在100%的速度, 也可以改成其它速度. 注意在新的NVIDIA驱动, GPUCurrentFanSpeed 被改成了 GPUTargetFanSpeed. 另外GPUFanControlState=1表示让用户可以手动调节GPU风扇速度。

感谢原文知乎作者:张三

二、如果你没有显示器

一般在ubuntu上搭建完深度学习环境后,许多朋友习惯把ubuntu的X桌面服务禁用掉,然后通过另一台windows系统的电脑通过ssh来连接GPU机器使用。这个时候X server已经被禁用掉,开机也自动启动命令行模式,上面第一种做法就不适用于这种情况了。原因是,nvidia-settings只能在X桌面环境下运行,若你想强行使用这个设置就会报错:

因此正常情况下,是不可能通过修改这个设置来改变风扇速度的。

但有没有其它方法修改呢?有!你需要骗过系统,让它你有显示器,这就是常说的headless模式。

主要的解决方法是参考了链接里这篇文章(fan speed without X : powermizer drops card to p8):

http://t.cn/RK9ASS5

这篇文章提供了修改风扇速度的脚本,在ubuntu下运行脚本即可实时调节风扇速度,从而为GPU降温。

这里提供详细步骤:

1. 克隆这个github仓库到本地目录/opt:

https://github.com/boris-dimitrov/set_gpu_fans_public

cd /opt git clone https://github.com/boris-dimitrov/set_gpu_fans_public

在这个仓库包括上图几个文件,主要起作用的是cool_gpu这个文件,我们把文件夹克隆下来之后,运行cool_gpu就可以调节风扇速度了。

2. 修改文件夹名字为set-gpu-fans,因为作者疏忽,在cool_gpu代码中此文件夹被命名为“set-gpu-fans”,然而git clone下来的文件夹名字是“set_gpu_fans_public”。

sudo mv set_gpu_fans_public set-gpu-fans

3. 创建一个符号链接,让系统知道这个代码在哪里:

ln -sf ~/set-gpu-fans /opt/set-gpu-fans

4.定位到set-gpu-fans文件夹,输入以下命令:

cd /opt/set-gpu-fans sudo tcsh ./cool_gpu >& controller.log & tail -f controller.log

这个命令是运行cool_gpu降温代码,启动后会看到这些实时变化的提示:

在开始计算测试前,我们看看目前GPU的温度:

这里用的是2卡进行计算测试,我们可以看到,2卡的Perf(性能)一项已经被调整为“P2”(其它卡仍为P8),2卡的温度为35度,而且三个风扇的速度均为55%。“P2”指的是nvidia的显卡power state,从P0到P12,最高性能状态为P0,运行计算是为P2,最低功耗(最低性能)为P12

启动模型训练,我们可以看到程序正在不断地自动调节温度:

当运行训练模型一段时间后,最终的温度状态如下图:

风扇被全部调节到80%的速度,温度稳定在65度!对比文章开头的数据,显卡温度从84度降到65度,整整下降了20度!

三、一点要注意的

在上面第二部分的文章出来之前,网上还流传着另一篇文章,那篇可以说是最原始的版本,上面第二部分的代码正是基于该篇原始版本文章改进的,链接地址在这里(Set fan speed without an X server):

http://t.cn/RK9yQmf

但这篇文章的原始代码存在一个严重问题:虽然能够强制改变风扇速度,但GPU会被降频工作,power state会被强制降为P8,导致运算性能严重下降!

可能是那篇文章发表时间比较早,不大适用现在最新的显卡和驱动,因此才有了上面第二部分的改进版本,所以大家不要使用原始版本的代码,否则GPU会被限制性能。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-07-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CVer

重磅:TensorFlow实现YOLOv3(内含福利)

YOLO官网:YOLO: Real-Time Object Detection keras-yolo3:https://github.com/qqwweee/k...

7.4K15
来自专栏CDA数据分析师

Python验证码识别处理实例

一、准备工作与代码实例 1、PIL、pytesser、tesseract (1)安装PIL:下载地址:http://www.pythonware.com/pro...

2179
来自专栏人工智能LeadAI

深度学习训练时GPU温度过高?几个命令,为你的GPU迅速降温。

新买回来的不带水冷公版GPU,在满负载运行的时候,温度从室温马上飙升到85度,而且模型训练不是几分钟完事,很有可能要长期保持在高温状态下运行,让如此昂贵的GPU...

3887
来自专栏云时之间

机器学习资料合计(一)

最近在群里发现一些小伙伴在寻找资料的时候总是无处可找,网上出现很多收集免费资料再去打包收钱的人,我看不惯这样的人,所以把自己收集的文件分享给大家。百度云经常抽风...

3528
来自专栏机器之心

资源 | 基于Python的开源人脸识别库:离线识别率高达99.38%

选自Github 机器之心编译 参与:路雪 仅用 Python 和命令行就可以实现人脸识别的库开源了。该库使用 dlib 顶尖的深度学习人脸识别技术构建,在户外...

3878
来自专栏AI科技大本营的专栏

深度学习训练时GPU温度过高?几个命令,为你的GPU迅速降温

图来自网络 作者 | 人工智豪(ID:Aihows) 新买回来的不带水冷公版GPU,在满负载运行的时候,温度从室温马上飙升到85度,而且模型训练不是几分钟完事,...

4569
来自专栏魏艾斯博客www.vpsss.net

Optimizilla 在线图片压缩优化 自由调整图片压缩比例

1415
来自专栏AI研习社

深度学习界的 “吃鸡挂”——目标检测 SSD 实验

“卧槽,又被 LYB 干了!” 背后传来一声哀嚎。 哈哈,看来,沉迷吃鸡的室友又被戒网瘾了。作为一个充满着正义的 LYB 的游戏,这人不长点眼力还真的不行啊。不...

4315
来自专栏ATYUN订阅号

【框架】为降低机器学习开发者门槛,苹果发布了Turi Create框架

近日,苹果在GitHub上发布了Turi Create框架。苹果表示,这个框架旨在通过简化机器学习模型的开发,降低开发者构建模型的门槛。详细说明如下: Turi...

3436
来自专栏CVer

糟了!TensorFlow 1.9.0 来了

关注 CVer 的同学应该知道,前不久Amusi整理了 TensorFlow相关的学习资料,并推出TensorFlow从入门到精通系列贴(最近事情比较多,更新的...

1183

扫码关注云+社区