开发 | 深度神经网络可视化工具集锦

AI 科技评论按:原文作者zhwhong,载于作者的个人博客,经授权发布。

TensorBoard:TensorFlow集成可视化工具

GitHub官方项目:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tensorboard

TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。

为了更方便 TensorFlow 程序的理解、调试与优化,Google发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。

当 TensorBoard 设置完成后,它应该是这样子的:

输入下面的指令来启动tensorboard:

tensorboard --logdir=/path/to/log-directory

这里的参数 logdir 指向 SummaryWriter 序列化数据的存储路径。如果logdir目录的子目录中包含另一次运行时的数据,那么 TensorBoard 会展示所有运行的数据。一旦 TensorBoard 开始运行,你可以通过在浏览器中输入 localhost:6006 来查看 TensorBoard。进入 TensorBoard 的界面时,你会在右上角看到导航选项卡,每一个选项卡将展现一组可视化的序列化数据集 。对于你查看的每一个选项卡,如果 TensorBoard 中没有数据与这个选项卡相关的话,则会显示一条提示信息指示你如何序列化相关数据。

TensorFlow 图表计算强大而又复杂,图表可视化在理解和调试时显得非常有帮助。 下面是一个运作时的可式化例子:

更多详细内容参考:

  • [TensorFlow中文社区] TensorBoard:可视化学习
  • [TensorFlow中文社区] TensorBoard:图表可视化
  • [极客学院] TensorBoard:可视化学习

Netscope:支持Caffe的神经网络结构在线可视化工具

官网:http://ethereon.github.io/netscope/quickstart.html GitHub项目:https://github.com/ethereon/netscope

“A web-based tool for visualizing neural network architectures (or technically, any directed acyclic graph). It currently supports Caffe’s prototxt format.”

Netscope是一个支持prototxt格式描述的神经网络结构的在线可视工具。它可以用来可视化Caffe结构里prototxt格式的网络结构,使用起来也非常简单,打开这个地址 http://ethereon.github.io/netscope/#/editor,把你的描述神经网络结构的prototxt文件复制到该编辑框里,按shift+enter,就可以直接以图形方式显示网络的结构了。

比如,以 mnist的Lenet 和 imagenet的AlexNet 网络结构为例,分别把Caffe中 caffe/examples/mnist/lenet_train_test.prototxt 和 caffe/models/bvlc_alexnet/train_val.prototxt 文件的内容复制到左侧编译框,按shift+enter,立即就可以得到可视化的结构图,具体每层的参数等,如下:

Netscope给出的几个常见CNN网络结构示例:

  • AlexNet | Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton
  • CaffeNet | Yangqing Jia, Evan Shelhamer, et. al.
  • Fully Convolutional Network — Three Stream | Jonathan Long, Evan Shelhamer, Trevor Darrell
  • GoogleNet | Christian Szegedy, et. al.
  • Network in Network | Min Lin, Qiang Chen, Shuicheng Yan
  • VGG 16 Layers | Karen Simonyan, Andrew Zisserman

以上网络的prototxt源文件见:https://github.com/ethereon/netscope/tree/gh-pages/presets 。

使用 python/draw_net.py绘制网络模型

python/draw_net.py,这个文件,就是用来绘制网络模型的,也就是将网络模型由prototxt变成一张图片。

在绘制之前,需要先安装两个库

1.安装GraphViz

$ sudo apt-get install GraphViz

注意,这里用的是apt-get来安装,而不是pip。

2.安装pydot

$ sudo pip install pydot

用的是pip来安装,而不是apt-get。

安装好了,就可以调用脚本来绘制图片了。

draw_net.py执行的时候带三个参数

  • 第一个参数:网络模型的prototxt文件;
  • 第二个参数:保存的图片路径及名字;
  • 第二个参数:- - rankdir = x,x 有四种选项,分别是LR, RL, TB, BT 。用来表示网络的方向,分别是从左到右,从右到左,从上到小,从下到上。默认为LR。

例:绘制Lenet模型

$ sudo python python/draw_net.py examples/mnist/lenet_train_test.prototxt netImage/lenet.png --rankdir=BT

参考阅读:

  • Netscope:支持Caffe的神经网络结构在线可视化工具
  • Caffe学习系列(18): 绘制网络模型
  • Caffe学习系列——工具篇:神经网络模型结构可视化
  • 深度网络的设计与可视化工具

Neural Network Playground

官网:http://playground.tensorflow.org GitHub项目:https://github.com/tensorflow/playground

Deep playground is an interactive visualization of neural networks, written in typescript using d3.js.

PlayGround是一个图形化用于教学目的的简单神经网络在线演示、实验的平台,非常强大地可视化了神经网络的训练过程。

参考阅读:

  • [知乎] 谁能详细讲解一下TensorFlow Playground所展示的神经网络的概念?
  • [Blog] 结合TensorFlow PlayGround的简单神经网络原理解释

ConvnetJS

官网:http://cs.stanford.edu/people/karpathy/convnetjs/ GitHub项目:https://github.com/karpathy/convnetjs

ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you’re training. No software requirements, no compilers, no installations, no GPUs, no sweat.

Some Online Demos

  • Convolutional Neural Network on MNIST digits
  • Convolutional Neural Network on CIFAR-10
  • Toy 2D data
  • Toy 1D regression
  • Training an Autoencoder on MNIST digits
  • Deep Q Learning Reinforcement Learning demo
  • Image Regression (“Painting”)
  • Comparison of SGD/Adagrad/Adadelta on MNIST

更多内容请关注官网和GutHub项目README。

WEVI

官网:wevi: word embedding visual inspector GitHub项目:https://github.com/ronxin/wevi

具体参考:wevi: Word Embedding Visual Inspector

CNNVis

文章来源:Towards Better Analysis of Deep Convolutional Neural Networks arxiv.org/abs/1604.07043

具体参见:能帮你更好理解分析深度卷积神经网络,今天要解读的是一款新型可视化工具——CNNVis,看完就能用!

摘要: 深度卷积神经网络(CNNs)在许多模式识别任务中取得了很大的性能突破, 然而高质量深度模型的发展依赖于大量的尝试,这是由于没有很好的理解深度模型是怎么工作的,在本文中,提出了一个可视化分析系统CNNVis,帮助机器学习专家更好的理解、分析、设计深度卷积神经网络。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-08-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【前沿】TensorFlow Pytorch Keras代码实现深度学习大神Hinton NIPS2017 Capsule论文

【导读】10月26日,深度学习元老Hinton的NIPS2017 Capsule论文《Dynamic Routing Between Capsules》终于在a...

3466
来自专栏人工智能LeadAI

TF.Learn 手写文字识别

minist问题 计算机视觉领域的Hello world 给定55000个图片,处理成28*28的二维矩阵,矩阵中每个值表示一个像素点的灰度,作为feature...

3426
来自专栏机器之心

教程 | 如何利用TensorFlow.js部署简单的AI版「你画我猜」图像识别应用

我们将使用卷积神经网络(CNN)来识别不同类型的手绘图像。这个卷积神经网络将在 Quick Draw 数据集(https://github.com/google...

1124
来自专栏AI研习社

7个深度神经网络可视化工具,不可错过!

TensorBoard:TensorFlow 集成可视化工具 GitHub 官方项目:https://github.com/tensorflow/tenso...

6454
来自专栏北京马哥教育

20行 Python 代码实现验证码识别

一、探讨 识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域…… 简单地说,计算机图形学的主要研究内容就是研究如...

4428
来自专栏新智元

Facebook开源PyTorch版本fairseq翻译模型,训练速度提高50%

【新智元导读】FAIR的开源序列到序列(sequence-to-sequence)引擎现在可以在PyTorch使用了。FAIR今天发布了fairseq-py,这...

36611
来自专栏潇涧技术专栏

Matlab Image Segmentation

参考文献: 基于迭代(自动阈值)算法的医学图像增强方法 该文献实现了全局和局部的图像分割代码,使用的都是迭代算法,对比下面的结果可以看出,在灰度差异特别大的图像...

371
来自专栏机器之心

资源 | 如何通过CRF-RNN模型实现图像语义分割任务

选自GitHub 作者:Shuai Zheng等 机器之心编译 参与:蒋思源 本 Github 项目通过结合 CNN 和 CRF-RNN 模型实现图像的语义分割...

42915
来自专栏量子位

OpenCV+深度学习预训练模型,简单搞定图像识别 | 教程

李林 编译自 pyimagesearch 作者 Adrian Rosebrock 量子位 报道 | 公众号 QbitAI ? OpenCV是一个2000年发布的...

4296
来自专栏云时之间

深度学习的fine-tuning过程

在深度学习过程中,获取数据集后,在搭建自己的网络之前需要进行的是微调,通过别人现有的网络观察自己数据的实验结果,并在此基础上,初步确定自己网络的大体结构,其中微...

3056

扫描关注云+社区