动态 | MIT CSAIL最新研究:将AI应用于流媒体视频,可获得更好的播放体验

AI科技评论按:在网上看视频时,缓冲或色块问题时有发生,极其影响观看体验。现在,MIT计算机科学与人工智能实验室(CSAIL)利用神经网络算法,最大化地缓解了这种现象。将这种算法应用到YouTube或Netflix等网站之后,观众将会获得更好的体验。此外,这项技术还能应用于VR,缓解现有的网络带宽不够的问题。

Engadget上的一篇文章详述了CSAIL新的方法,AI科技评论将其编译如下。

缓冲和色块是流媒体视频播放中常常出现的问题。一旦出现这种情况,会影响观看体验,观众换台之后,又会影响广告商的收入。并且,这种情况还给流媒体服务带来了技术上的难点——很难设计出解决方案。

MIT 计算机科学与人工智能实验室(CSAIL)新发明的神经网络AI算法或许恰好能满足互联网所需的流畅流媒体服务。

上面播放的视频并不是以整段传输到电脑上的,那会占用太大的带宽。事实上,数据被分成小片段,然后按顺序传送。但是为了保证视频质量,像YouTube这样的网站是利用ABR(码率自适应)算法来确定视频播放的分辨率。ABR算法通常有两种模式:一种是测量网络传输数据的速率,另一种是保证视频开头有足够的缓冲区。

如果基于速率的算法失败了,系统会降低比特率以确保视频继续播放,这会导致色块问题。

另外,如果试图将视频快进太多,将会更加影响播放体验,这是因为基于缓冲的系统提前加载新的视频块和缓冲区时,不得不暂停播放。

这两种ABR模式本质上是解决同一问题的两面,他们都没有完全解决问题的能力。接下来就是人工智能的用武之地了。

实际上已经有了一些关于这个问题的研究。卡耐基梅隆大学的一个研究小组最近开发了一种叫做“模型预测控制”(MPC)的方案,试图预测网络环境如何随时间变化,并基于这个模型做出优化决策。然而,这个系统的问题在于,它只会基于模型自身做出优化决策,不适合那些突然或急剧发生流量变化的网络。

CSAIL的新方法被称为“Pensive”,它并不依赖模型,而是用机器学习来计算何时(以及何种情况下)在速率ABR和基于缓冲的ABR之间进行切换。和其他神经网络一样,Pensive使用奖励和惩罚来强化每次试验的结果。随着时间的推移,系统能够调整自己的行为,始终获得最高的奖励。有趣的是,由于可以调节奖励,我们可以调整系统,让它执行我们想要得到的行为。

麻省理工学院教授Mohammad Alizadeh在一份声明中说:“我们的系统很灵活,无论想要什么样的效果,都可以优化它来实现。甚至可以想象用户个性化自己的流媒体体验,这取决于他们是想要让缓冲优先还是让分辨率优先。”该团队对这个神经网络只进行了总长一个月的下载视频内容的训练,就已经能获得与MPC系统相同的分辨率,但减少了10%到30%的缓冲问题。

我们最终会看到这一技术被YouTube和Netflix等公司采用,但麻省理工学院的团队希望先将它应用于VR。Alizadeh说:“VR需要4k的分辨率,在使用时,码率很容易就达到每秒上千兆,而现在的网络根本无法支持。我们很高兴看到像Pensieve这样的系统能够为VR等这样的应用做些什么。这只是我们所做出的第一步。”

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-08-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏奇点大数据

Pytorch神器(10)

今天聊一聊IT工程师如何转型深度学习工程师的话题。其实这个话题已经不是第一次聊了,也是很多IT工程师朋友比较关心的。毕竟在新一代的IT工作环境中,AI思维几乎是...

1192
来自专栏Small Code

2017 Python 问卷调查结果初步分析

2017 年末,PSF(Python Software Foundation,Python 软件基金会)和 JetBrains 一起进行了一次全球范围内的关于 ...

72816
来自专栏媒矿工厂

Facebook VR方案总结(一)

VR虚拟现实是一种通过创建虚拟世界,使用户沉浸其中的技术,其萌芽于上世纪60年代。但VR第一次走进大家的视野,或许要归功于Facebook。2014年Faceb...

4258
来自专栏新智元

【AI幽灵】超90%论文算法不可复现,你为何不愿公开代码?

新智元编译 来源:science、futurism 编译:克雷格、Marvin 【新智元导读】过去几年发表的AI顶会论文提出的400种算法中,公开算法代...

4469
来自专栏人工智能快报

Intel Fellow:人工智能与高性能计算将走向融合

作为Intel公司的Fellow,Alan Gara表示随着神经形态计算、量子计算等新型计算、存储、通信技术快速推动百亿亿次计算成为现实,人工智能与高性能计算将...

38811
来自专栏PPV课数据科学社区

不要担心没数据!史上最全数据集网站汇总

本文将为您提供一个网站 资源列表,从中你可以使用数据来完成你自己的数据项目,甚至创造你自己的产品。

2713
来自专栏数据科学与人工智能

【智能】数据科学管道初学者指南

曾几何时,有一个名叫Data的男孩。 在他的一生中,他总是试图了解他的目的是什么。 我有什么价值观? 我可以对这个世界产生什么影响? 数据来自哪里? 看到你和数...

943
来自专栏人工智能的秘密

深度学习让人脸识别准确率不断提升

  人脸识别、图像分类、语音识别是最早的深度学习取得突破的主要几个技术方向。在2014年前后,多家技术公司纷纷宣布其利用深度学习在LFW上取得的最新成果,此为深...

2999
来自专栏用户3246163的专栏

[脑书笔记]《整体性学习》2-获取和理解信息的技术

这篇脑书继续讲整体性学习的第二部分整体性学习的技术,在《整体性学习》1里面在谈到信息进入大脑的顺序是,获取,理解,拓展,纠错和应用。这篇脑书笔记主要针对这5个步...

1031
来自专栏人人都是极客

助力边缘计算,Arm机器学习处理器来了!

如果能够拥有一部智能个人助理,它能听懂我们说的话并做出智能反应,然后处理日常任务,那感觉一定很棒。鉴于机器学习 (ML) 领域近期取得的进展,Arm相信这一天很...

1811

扫码关注云+社区