谷歌:量子计算是深度学习的完美选择么?(12月8日将发布转折消息)

在过去的几年里,谷歌一直在试着提升他人工智能的服务水平。谷歌恰好也有量子计算机——一个能够在某些计算上执行速度比经典计算机快的系统。

认为谷歌会把运行AI的工作负荷放在量子计算机上的看法是很合理的。谷歌的量子计算机是从创业公司D-wave那里得到的,一直保管在位于加利福尼亚州山景城中的美国宇航局艾姆斯研究中心中,它与谷歌总部相邻。

谷歌很热衷于提高其AI——深度学习——的能力。深度学习涉及到了使用大量数据来训练人工神经网络,并用其对新的数据做出推论。

但是上周在谷歌总部的一次活动中,一个谷歌的研究人员解释道,量子计算基础设施对于卷积人工网络或者循环神经网络来说并不是一个很好的系统。

其他几个科技公司,包括Facebook、微软和百度,已经用深度学习对图片内容识别、自然语言处理和语音识别进行试验了。这些大公司,有足够的钱以用于基础设施的建设,但是他们没有量子计算机。谷歌有,但这并不意味着量子计算机对于深度学习来说是最好的工具。

总之,如果上周的报告是正确的话,谷歌可能更有兴趣使用D-wave机器来提升谷歌的一些核心处理如搜索排名、广告位置或垃圾邮件过滤。(并且谷歌可能打算更多地谈论其量子计算工作;根据9to5Google的报道,公司可能计划在12月8日对此主题举行一个活动。)

Greg Corrado,谷歌的高级研究科学家,在上周的活动中告诉记者:“深度学习不同,大体来讲,它需要一个模型和一系列参数,并且你不能在有以上两者之前对新数据做出预测。”

“一个量子计算机能够容纳的参数总量和操作数量是很小的。”Corrado说道。

他解释说,例如识别图片中的猫,可能需要数以百万计的参数。这会涉及到比数十亿更多的步骤,以得到一只猫的粒度特征,例如它的胡须,最终从更高的层次将其从图片中识别出来。

所以,到现在为止,Corrado说到,D-Wave设备不是他在“谷歌大脑”项目中进行研究工作时长时间接触到的设备。

这并不是说其他公司不想将量子计算机应用到深度学习当中。上个月,同样拥有D-Wave量子计算机的国防承包商——美国洛克希德马丁公司——的两个员工发表了一篇论文,这篇论文论述了他们使用D-Wave机器来帮助训练深度神经网络的方法。

谷歌打算在12月份宣布关于量子计算的转折性消息。

据D-Wave公司的董事会成员透露,12月8日,谷歌将会宣布一个关于量子计算的转折性的消息。 Steve Jurvtson没有透露出谷歌的计划是什么,尽管他的评论与一张关于量子计算进度近年指数性增长的图片有关。

自从1982年物理学家Richard Feynman 第一次提出这样的理论后,量子计算机有希望为世界带来超级强大计算力的新世纪。谷歌也是相应发展中的先驱。他们使用了加拿大D-Wave公司开发的程序来探索这种技术在发展人工智能和机器学习上的潜力。

“敬请观注12月8日谷歌宣布的可能是转折点的消息吧,” Jurvetson 在他三年前上传到Flickr上的照片下面写着这样的评论。在被谷歌新闻网站 9to5Google首先识别出来后,他的评论和一则D-Wave宣布一台1000+的量子比特的量子计算机被卖给国家安全研究机构Los Alamos的消息一起出现。

Jurvetson的 Flickr 的图片暗示了罗斯定律(Rose’s Law),它模仿了摩尔定律,主要是量子计算机的计算能力随着时间的变化而变化的曲线。根据图像中上次量子计算的里程碑的数据点来推算,量子计算机超过传统电脑的时间点就在不久的将来。

“如果我们停用disbelief一阵子,然后使用D-Wave在处理性能上的早期数据的话,那么不久的将来就应该是转折点了,量子计算机将会超越传统计算机并遥遥领先。摩尔定律都无法追上。” Jurvetson 在他最近的博文中说到。

“一年以后,它的表现会优于地球上所有电脑合并起来的表现。在紧接着的一年里,会使量子比特翻倍并超过宇宙…这意思是说,它能够解决非量子计算机无法解决的问题,那时候即使是宇宙的总质量和能量都在它的随它处理并被塑造为最好的计算机。”

虽然有这样的巨大理论潜力,量子计算机研究员还在构造一个多用途的量子计算机。在这实现之前,一个“量子——经典”混合算法需要被创造出来。微软研究人员最近表示这个进步可能达到十年那么久。

“虽然如果接下来三年会像罗斯定律那样发展的话,这会很让人吃惊,但是今天,也许我们可以说这并不是不可能的,” Jurvetson在他的Flickr 博文中说到,“并且这个世界有可能变十分有趣”。

相关论文下载

1.An Introduction to Quantum Computing by Kaye P., Laflamme R., & Mosca M.(量子计算介绍)

2.Global catastrophic risk and security implications of quantum computers(量子计算机的灾难性风险在安全应用)

3.Quantum Algorithms Catalog(量子计算算法目录)

4.Application of Quantum Annealing to Training of Deep Neural Networks(量子计算与深度神经网络)

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2015-11-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

深度学习是蓝海还是深坑? | 麦肯锡AI应用报告

麦肯锡出品,一份深度学习领域的分析报告,包含400个应用案例,横跨19个行业的9种业务功能。报告重点强调了前沿AI技术的应用范围之广,以及经济潜力之盛,也提到了...

1243
来自专栏新智元

【AI研究者为什么喜欢游戏】DeepMind、Open AI和微软争相开源游戏训练平台

【新智元导读】游戏,更准确地说,模拟场景对于人工智能的研发来说是一个非常理想的场所,对于人工智能技术走向实际应用有着不容忽视的推动作用。目前,DeepMind、...

3298
来自专栏人工智能快报

OpenAI研究所制定四大研究目标

OpenAI是一家非营利人工智能研究公司,其使命是构建安全的人工智能,并尽可能广泛推广人工智能。OpenAI正在努力发展人工智能,并乐于与其他机构共享其方案及成...

26510
来自专栏大数据文摘

深度学习,未来机器人的进化途径

1515
来自专栏新智元

【清华AI公开课】施尧耘:量子计算终将实现;段路明:大规模量子计算还任重道远

2224
来自专栏杨熹的专栏

婴儿们真的都是天才!

婴儿令人惊奇的逻辑思维 婴儿们真的都是天才! 为什么小孩子能从无到有 快速地学会很多东西? 因为他们都能从少量的、充满干扰的数据中,迅速而准确地得出丰富的理论...

2273
来自专栏PPV课数据科学社区

AI时代就业指南:数学专业,你看不见的前尘似锦

数学专业,在大众化的眼光看来,毕业后的就业前景无非是当老师或者搞科研,这个专业似乎太古板且就业道路狭窄。然而,在AI时代,这些都是偏见,数学专业毕业生早已是互联...

35210
来自专栏镁客网

首席科学家杨强教授:人工智能的下一个技术风口与商业风口

1403
来自专栏大数据文摘

AlphaGo彻底战胜人类意味着什么

22810
来自专栏机器之心

IBM宣称人类语音识别词错率实际应为5.1%,自家系统已突破至5.5%

选自IBM 作者:George Saon 机器之心编译 参与:吴攀、黄小天 去年十月,微软人工智能与研究部门的一个研究者和工程师团队报告他们的语音识别系统实现了...

2726

扫码关注云+社区