开发 | Facebook、微软联合推出​ ONNX 标准,号称要解决开发框架碎片化

AI 科技评论消息,今日微软和 Facebook 发布了一个全新的开源项目——ONNX,欲借此打造一个开放的深度学习开发工具生态系统。

ONNX 的全称为“Open Neural Network Exchange”,即“开放的神经网络切换”。顾名思义,该项目的目的是让不同的神经网络开发框架做到互通互用。目前,Microsoft Cognitive Toolkit,PyTorch 和 Caffe2 已宣布支持 ONNX。

ONNX 所针对的,可以说是深度学习开发生态中最关键的问题之一:

开发框架的碎片化。

在任意一个框架上训练的神经网络模型,无法直接在另一个框架上用。开发者需要耗费大量时间精力把模型从一个开发平台移植到另一个。

借助 ONNX,开发者能把在 PyTorch 上训练的模型直接拿到 Caffe2 上进行推理。对于把模型从研究阶段推向产品阶段,这是一个经常遇到的场景。微软宣布正积极开发 Microsoft Cognitive Toolkit 的下个版本,将会提供对 ONNX 的支持。

ONNX 的工作原理是:

实时跟踪某个神经网络是如何在这些框架上生成的,接着,使用这些信息创建一个通用的计算图,即符合ONNX 标准的计算图。这样做行得通,是因为在计算方面,这些框架产生的最终结果都非常接近,虽然更高级的表达不同。

ONNX 标准意味着什么?

PyTorch、Microsoft Cognitive Toolkit 等框架提供的界面,让开发者创建、运行用来表示神经网络的计算图更加方便。虽然功能相似,但每一个框架都用一套不同的格式表示这些计算图。雷锋网获知,ONNX 的表示方式有两个核心优势:

  • 框架之间的互用互通

开发者能更方便地在不同框架间切换,为不同任务选择最优工具。基本每个框架都会针对某个特定属性进行优化,比如训练速度、对网络架构的支持、能在移动设备上推理等等。在大多数情况下,研发阶段最需要的属性和产品阶段是不一样的。这导致效率的降低,比如选择不切换到最合适的框架,又或者把模型转移到另一个框架导致额外的工作,造成进度延迟。使用支持 ONNX 表示方式的框架,则大幅简化了切换过程,让开发者的工具选择更灵活。

  • 优化共享

硬件设备商们推出的对神经网络性能的优化,将能够一次性影响到多个开发框架——如果用的是 ONNX 表示方式。如果优化很频繁,把它们单独整合到各个框架是个非常耗费时间的事。通过 ONNX 表示方式,更多开发者就能获取这些优化。

技术概括

ONNX 为可扩展的计算图模型、内部运算器(Operator)以及标准数据类型提供了定义。在初始阶段,Facebook 和微软会专注于推理(Inference)所需要的各项能力(评估)。

每个计算数据流图以节点列表的形式组织起来,构成一个非循环的图。节点有一个或多个的输入与输出。每个节点都是对一个运算器的调用。图还会包含协助记录其目的、作者等信息的元数据。

运算器在图的外部实现,但那些内置的运算器可移植到不同的框架上。每个支持 ONNX 的框架将在匹配的数据类型上提供这些运算器的实现。

TensorFlow 的缺席

ONNX 标准能否在深度学习开发者们接受,在很大程度上将取决于它在各个框架上的普及程度。

在雷锋网看来,目前 ONNX 最大的问题是,最受欢迎的开发框架 TensorFlow 没有兼容 ONNX 标准。亚马逊的御用框架 MXNet 也没有。Facebook 和微软都表示,将来会持续有更多框架加入到 ONNX 生态中,但没有透露 TensorFlow 和 MXNet 是否在计划中。谷歌和亚马逊也还没有对此事表达态度,他们愿不愿意合作,尚属未知。

如何使用

初始版 ONNX 的代码、文件,已在 GitHub 上开源。Facebook 和微软表示将会持续改进 ONNX, 将会在不久的将来推出范例、工具、reference implementations 以及模型。

更多关于 ONNX 的信息可访问 Facebook 官方博客。

via 微软,venturebeat

GitHub 地址:https://github.com/onnx/onnx

Facebook 官方博客:https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks/

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-09-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏社区的朋友们

个性化资讯推荐算法 (上)

头条为何能取得成功?很多人会说是头条的个性化推荐技术做得好,个人认为其实不尽然。本文罗列了相关的个性化推荐技术,特别是资讯推荐常用的算法,带大家从“内行”的角度...

1.5K0
来自专栏CSDN技术头条

Google I/O大会,炫酷产品汇总

北京时间5月19日凌晨,一年一度的谷歌 I/O大会正式拉开帷幕,带领观众及开发者共同瞻望即将到来的工具及技术。 Daydream VR ? 基于Daydrea...

18810
来自专栏机器人网

开发者总结: 8 种最好的 AI 机器学习开源项目

随着 AI 技术快速发展,各种理论与实践层出不穷,它正在迅速改变我们生活中几乎每一个领域,从我们如何交流到用于交通的手段。作为开发者或者学习者,在开始构建机器学...

882
来自专栏CSDN技术头条

深度解密今日头条的个性化资讯推荐技术

资讯产品近几年持续火爆,赚足了人们的眼球。以今日头条披露的数据为例:日活跃用户超过一亿,单用户日均使用时长超过 76分钟,资讯类产品的火爆程度可见一斑。资讯类产...

2846
来自专栏我就是马云飞

成为android工程师的30+个小技巧

成为Android开发人员很容易,但成为一个成功的Android开发人员,而从其他开发者中脱颖而出。要做到这一点,需要很多努力,激情,奉献和毅力。 没有快捷方式...

1726
来自专栏AI科技大本营的专栏

视频教程 | 7行Python,搭建一个可以识花的机器学习APP

程序员想转型AI却迟迟无法开始?也许你需要一种更加有趣的学习方式。 Siraj Raval是一位人工智能领域的编程高手,毕业于哥伦比亚大学,曾任职于 Twili...

3257
来自专栏全栈工程师成长之路

浅谈iOS架构的技能栈

3096
来自专栏BestSDK

正确的配色多重要?直接影响产品转化率

首先看两张图,感受下配色的重要性。 “看这张,是不是很有食欲?” ? “那这张呢?” ? “没上张让人有食欲。” 其实每个人的心里,都有一张色彩心理学。 ? ...

2604
来自专栏AI传送门

斯坦福大学《机器学习》课程-中文版内容(3.6)

983
来自专栏AI科技评论

业界 | 谷歌新进展:用DNN模型为YouTube视频添加环境音效字幕

我们在感知外部世界的过程中,声音(audio)起到了极大的作用。在这里,我们把声音分解为两类,一类是语音(speech),另一类是环境音(sound)。人们会本...

3569

扫描关注云+社区