动态 | Deepmind语音生成模型WaveNet正式商用:效率提高1000倍

AI科技评论消息:2017年10月4日,Deepmind发表博客称,其一年前提出的生成原始音频波形的深层神经网络模型WaveNet已正式商用于Google Assistant中,该模型比起一年前的原始模型效率提高1000倍,且能比目前的方案更好地模拟自然语音。

以下为Deepmind博客所宣布的详细信息,AI科技评论摘编如下:

一年之前,我们提出了一种用于生成原始音频波形的深层神经网络模型WaveNet,可以产生比目前技术更好和更逼真的语音。当时,这个模型是一个原型,如果用在消费级产品中的计算量就太大了。

在过去12个月中,我们一直在努力大幅度提高这一模型的速度和质量,而今天,我们自豪地宣布,WaveNet的更新版本已被集成到Google Assistant中,用于生成各平台上的所有英语和日语语音。

新的WaveNet模型可以为Google Assistant提供一系列更自然的声音。

为了理解WaveNet如何提升语音生成,我们需要先了解当前文本到语音(Text-to-Speech,TTS)或语音合成系统的工作原理。

目前的主流做法是基于所谓的拼接TTS,它使用由单个配音演员的高质量录音大数据库,通常有数个小时的数据。这些录音被分割成小块,然后可以将其进行组合以形成完整的话语。然而,这一做法可能导致声音在连接时不自然,并且也难以修改,因为每当需要一整套的改变(例如新的情绪或语调)时需要用到全新的数据库。

另一方案是使用参数TTS,该方案不需要利用诸如语法、嘴型移动的规则和参数来指导计算机生成语音并进行语音拼接。这种方法即便宜又快捷,但这种方法生成的语音不是那么自然。

WaveNet采取完全不同的方法。在原始论文中,我们描述了一个深层的生成模型,可以以每秒处理16000个样本、每次处理一个样本党的方式构建单个波形,实现各个声音之间的无缝转换。

WaveNet使用卷积神经网络构建,在大量语音样本数据集上进行了训练。在训练阶段,网络确定了语音的底层结构,比如哪些音调相互依存,什么样的波形是真实的以及哪些波形是不自然的。训练好的网络每次合成一个样本,每个生成的样本都考虑前一个样本的属性,所产生的声音包含自然语调和如嘴唇形态等参数。它的“口音”取决于它接受训练时的声音口音,而且可以从混合数据集中创建任何独特声音。与TTS系统一样,WaveNet使用文本输入来告诉它应该产生哪些字以响应查询。

原始模型以建立高保真声音为目的,需要大量的计算。这意味着WaveNet在理论上可以做到完美模拟,但难以用于现实商用。在过去12个月里,我们团队一直在努力开发一种能够更快地生成声波的新模型。该模型适合大规模部署,并且是第一个在Google最新的TPU云基础设施上应用的产品。

(新的模型一秒钟能生成20秒的音频信号,比原始方法快1000倍)

WaveNet团队目前正在准备一份能详细介绍新模型背后研究的论文,但我们认为,结果自己会说话。改进版的WaveNet模型仍然生成原始波形,但速度比原始模型快1000倍,每创建一秒钟的语音只需要50毫秒。该模型不仅仅速度更快,而且保真度更高,每秒可以产生24,000个采样波形,同时我们还将每个样本的分辨率从8bit增加到16bit,与光盘中使用的分辨率相同。

这些改进使得新模型在人类听众的测试中显得发声更为自然。新的模型生成的第一组美式英语语音得到的平均意见得分(MOS)为4.347(满分5分),而真实人类语音的评分只有4.667。

新模式还保留了原始WaveNet的灵活性,使我们能够在训练阶段更好地利用大量数据。具体来说,我们可以使用来自多个语音的数据来训练网络。这可以用于生成高质量和具有细节层次的声音,即使在所需输出语音中几乎没有训练数据可用。

我们相信对于WaveNet来说这只是个开始。我们为所有世界语言的语音界面所能展开的无限可能而兴奋不已。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-10-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器人网

AI科学家李飞飞告诉我们:超越 ImageNet 的视觉智能

说起人工智能,孕育了卷积神经网络和深度学习算法的 ImageNet 挑战赛恐怕是世界上最著名的 AI 数据集。8 年来,在 ImageNet 数据集的训练下,人...

983
来自专栏华章科技

人工智能、机器学习、深度学习,三者之间的同心圆关系

理解三者之间关系的最简便方法就是将它们视觉化为一组同心圆——首先是最大的部分人工智能——然后是后来兴旺的机器学习——最后是促使当下人工智能大爆发的深度学习——在...

684
来自专栏机器之心

前沿 | 从虚拟世界伸到现实的机械臂,靠摄像机就能玩转任何物体

论文链接:https://d4mucfpksywv.cloudfront.net/research-covers/learning-dexterity/lear...

1022
来自专栏大数据文摘

理解深度学习的局限性

2898
来自专栏ATYUN订阅号

【游戏】国外大神建立了一个深度神经网络来玩足球游戏FIFA 18

游戏中的人工智能机器人通常是通过手动编码来构建一系列游戏智能的规则。在很大程度上,这种方法在使机器人模仿人类行为方面做得更好。然而,对于大多数游戏来说,究竟是机...

34710
来自专栏机器之心

学界 | 谷歌大脑实现更宽广的智能体视野,在Atari2600上可持续超越人类玩家!

近年来,深度强化学习(RL)领域取得了重大进展,催生了能够在各种各样的任务中达到与人类控制能力水平相当的人工智能体,这些任务其中就包括雅达利(Atari)260...

622
来自专栏大数据文摘

重磅译制 | 更新:MIT 6.S094自动驾驶课程第2讲(2)深度Q学习

1524
来自专栏机器之心

学界 | DeepMind论文三连发:如何在仿真环境中生成灵活行为

选自DeepMind 机器之心编译 参与:smith、黄小天、路雪 一只猴子在树林之间敏捷而灵活地跳跃穿梭,或者一名足球运动员快速带球过人、劲射得分,这些表现皆...

3086
来自专栏机器之心

业界 | 解密谷歌Gmail新功能:结合BoW模型和RNN-LM,帮助用户快速写邮件

1272
来自专栏人称T客

人工智能、机器学习、深度学习的区别在哪?|编译

编者:T 客汇 杨丽 张苏月 关键词:人工智能,机器学习,深度学习 网址:www.tikehui.com 有人说,人工智能(Artificial Intell...

3095

扫描关注云+社区