【白硕】穿越乔家大院寻找“毛毛虫”

看标题,您八成以为这篇文章讲的是山西的乔家大院的事儿了吧?不是。这是一篇烧脑的技术贴。如果您既不是NLP专业人士也不是NLP爱好者,就不用往下看了。

咱说的这乔家大院,是当代语言学祖师爷乔姆斯基老爷子画下来的形式语言类型谱系划分格局。最外边一圈围墙,是0型文法,又叫短语结构文法,其对应的分析处理机制和图灵机等价,亦即图灵可计算的;第二圈围墙,是1型文法,又叫上下文相关文法,其对应的分析处理机制,时间复杂度是NP完全的;第三圈围墙,是2型文法,又叫上下文无关文法,其对应的分析处理机制,时间复杂度是多项式的,最坏情况下的最好渐进阶在输入句子长度的平方和立方之间;最里边一层围墙,是3型文法,又叫正则文法,其对应的分析处理机制和确定性有限状态自动机等价,时间复杂度是线性的。这一圈套一圈的,归纳整理下来,如下图所示:

乔老爷子建的这座大院,影响了几代人。影响包括这样两个方面:

第一个方面,我们可以称之为“外向恐惧情结”。因为第二圈的判定处理机制,时间复杂度是NP完全的,于是在NP=P还没有证明出来之前,第二圈之外似乎是禁区,没等碰到已经被宣判了死刑。这样,对自然语言的描述压力,全都集中到了第三圈围墙里面,也就是上下文无关文法。大家心知肚明自然语言具有上下文相关性,想要红杏出墙,但是因为出了围墙计算上就hold不住,也只好打消此念。0院点灯……1院点灯……大红灯笼高高挂,红灯停,闲人免出。

第二个方面,我们可以称之为“内向求全情结”。2型文法大行其道,取得了局部成功,也带来了一个坏风气,就是递归的滥用。当递归层数稍微加大,人类对于某些句式的可接受性就快速衰减至几近为0。比如,“我是县长派来的”没问题,“我是县长派来的派来的”就有点别扭,“我是县长派来的派来的派来的”就不太像人话了。而影响分析判定效率的绝大多数资源投入,都花在了应对这类“不像人话”的递归滥用上了。自然语言处理要想取得实用效果,处理的“线速”是硬道理。反思一下,我们人类的语言理解过程,也肯定是在“线速”范围之内。递归的滥用,起源于“向内求全情结”,也就是一心想覆盖第三圈围墙里面最犄角旮旯的区域,哪怕那是一个由“不像人话”的实例堆积起来的垃圾堆。

可以说,在自然语言处理领域,统计方法之所以在很长时间内压倒规则方法,在一定程度上,就是向外恐惧情结与向内求全情结叠加造成的。NLP领域内也有很多的仁人志士为打破这两个情结做了各种各样的努力。

先说向外恐惧情结。早就有人指出,瑞士高地德语里面有不能用上下文无关文法描述的语言现象。其实,在涉及到“分别”的表述时,汉语也同样。比如:“张三、李四、王五的年龄分别是25岁、32岁、27岁,出生地分别是武汉、成都、苏州。”这里“张三、李四、王五”构成一个名词列表,对这类列表的一般性句法表述,肯定是不定长的,但后面的两个“分别”携带的列表,虽然也是不定长的,但却需要跟前面这个列表的长度相等。这个相等的条件,上下文无关文法不能表达,必须走出第三圈围墙。

再说向内求全情结。追求“线速”的努力,在NLP领域一直没有停止过。从允许预读机制的LR(k)文法,到有限自动机堆叠,再到基于大型树库训练出来的、最终转化为Ngram模型(N=5甚至更大)的概率上下文无关文法分析器,甚至可以算上统计阵营里孤军深入自然语言深层处理的RNN/LSTM等等,都试图从2型文法中划出一个既有足够的语言学意义、又能达到线速处理效率的子类。可以说,凡是在与统计方法的搏杀中还能活下来的分析器,无一不是在某种程度上摆脱了向内求全情结、在基本尊重语言学规律基础上尽可能追求线速的努力达到相对成功的结果。这个经过限制的子类,比起第三圈围墙来,是大大地“压扁”了的。

如果认同“一切以真实的自然语言为出发点和最终落脚点”的理念,那就应该承认:向外有限突破,向内大举压缩,应该是一枚硬币的两面。我们希望,能够有一种形式化机制同时兼顾这两面。也就是说,我们理想中的自然语言句法的形式化描述机制,应该像一条穿越乔家大院的“毛毛虫”,如下图所示:

据笔者妄加猜测,这样的“毛毛虫”,可能有人已经找到,过一段时间自然会见分晓。

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2016-01-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏日常学python

爬取《悲伤逆流成河》猫眼信息 | 郭敬明五年电影最动人之作

知道《悲伤逆流成河》上映还是在qq空间看见学弟发了说说,突然想起初中追小四的书,每天看到晚上10点多,昨天看了枪版的《悲伤逆流成河》,整个故事情节几乎和小说一模...

632
来自专栏量子位

解密600年前的秘密,科学家利用AI成功破译“伏尼契手稿”第一句

唐旭 编译整理 量子位 出品 | 公众号 QbitAI 1912年,一份残余240页、从头至尾由未知文字与奇异插图写成的手稿在罗马附近的一所耶稣会大学图书馆中被...

33913
来自专栏大数据杂谈

Python爬虫:爬取拉勾网职位并分析

本文从拉勾网爬取深圳市数据分析的职位信息,并以CSV格式保存至电脑,之后进行数据清洗,生成词云,进行描述统计和回归分析,最终得出结论。

1082
来自专栏数据小魔方

R语言可视化——用ggplot构造期待已久的雷达图

之前一直苦恼于ggplot函数无法制作雷达图,心想着既然饼图可以通过柱形图+极坐标模拟出来,为啥雷达图不行。 我尝试着用折线图+极坐标来模拟雷达图(之前在制作饼...

2686
来自专栏专知

【专知荟萃03】知识图谱KG知识资料全集(入门/进阶/论文/代码/数据/综述/专家等)(附pdf下载)

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得...

7587
来自专栏大数据挖掘DT机器学习

python数据挖掘:能不能找出吃货最佳住宿点?

这次我爬出了哈尔滨市TOP285家好吃的店,包括烧烤的TOP,饺子的TOP,酱骨的TOP等等等等,在地图上显示,规划热点,再用聚类算法计算下能不能找出吃货最佳的...

3355
来自专栏钱塘大数据

100张经典信息可视化图表,让你脑洞大开

本文作者:JoAnn ? 18世纪50年代霍乱时期, John Snow绘制的一张霍乱疫情的位置图, 并通过该图表找到了霍乱疫情源头所在。 那时起,信息设计便已...

3587
来自专栏生信技能树

标准TCGA大文章需要哪些数据?[赠重磅资料]

很多人总是问我如何挖掘TCGA的数据,发文章! 可是他却连TCGA的数据是怎么来的都不知道,TCGA发了几十篇CNS大文章(自己测序的)了,每篇文章都有几百个左...

2755
来自专栏java工会

科大讯飞人工智能方向的一次面试经历

就在上个星期五(2017年12月8号),我去了科大讯飞面试Java智能语音这一块。

662
来自专栏Sign

动作游戏中的碰撞系统

对于熟悉动作游戏系统制作的玩家来说,这个应该算是常识了,不过还是写一下吧。 毕竟,可能有些同学还没看过。 在动作游戏里,角色的『图』与实际产生的效果是不完全对等...

35616

扫码关注云+社区