讨论 | 你是否遇到过你完全不能理解的机器学习概念?

俗话说:隔行如隔山。但就算同一座山,有的时候因为“山”太大,未能爬到顶峰的人往往很难一窥整座山的全貌。

这不,AI科技评论在Reddit的机器学习版块就发现了一个很热烈的讨论,题目叫做:

机器学习专业的研究僧们进来说一说,你是否遇到过你完全不能理解的机器学习概念?

Those who are working professionally in ML and/or academics who have completed graduate-level coursework in ML: Are there any ML concepts that you don't quite fully grasp?

在问题下也有不少有意思的回答,AI科技评论整理了部分回答,与机器学习的“炼丹师”们共勉。

排在最前面的是@Leonoel讲述的一个高票故事:

“故事时间。

我喜欢和我的学生讲这个故事来激励他们,同时也希望能减轻他们的‘不懂装懂综合症’。

在NIP 2013上,当时有一位演讲者的演讲我完全听不懂。这是我博士的最后一年,这让我产生了警觉。我开始感觉很糟:作为一个新出炉的博士,我竟然没有能从NIPS的主题报告中学到任何东西!

当时坐在我旁边的两个朋友,其中一位是UC Berkeley的Michael Jordan,另一位在波士顿和Andrew McCallum一起做研究。这两位教授在机器学习界的大名如雷贯耳,所以我想当然的想,他们应该从这个报告中学到不少东西。

但最后,他们告诉我,他们同样听得一脸懵逼。

这个故事的含义是:机器学习是一个巨大的领域,如果你在你自己的领域花了足够多的时间,你很有可能难以对其他领域了如指掌。不要浪费你的时间去了解每一件事情。

还有另一个例子:我有个朋友是普林斯顿的数学家,但他从来没有理解过机器学习背后的数学,因为他主要是做数学理论研究的。”

在这个回答下,网友@iamiamwhoami做了补充说明:

“你在应用领域社区混久了就会感觉到,有的人真的是不怎么擅长解释他们的研究。”

@gionnelles也做出了类似的回答:

“如果有人声称他了解机器学习领域的所有东西,这绝壁是撒谎或者是错误的。机器学习领域太过广泛,研究进展太快,这意味着人们可以成为直接接触他们所在细分领域的专家,并聪明地讨论其他部分,但总有新的东西值得学习。”

甚至一些机器学习基础的重要理论如RNN和反向传播理论,不少人也表示有诸多理解难点,例如网友@klop2031就这么说:

“RNN的递归怎么绕,以及反向传播如何通过时间起作用,对我来说仍然一团乱麻。我仍然需要通过数学方式来理解,同样,对比分歧的原理如何我也不大清楚。”

好不容易弄懂了反向传播,却发现Hinton老爷子又有了新理论。@wdroz是这么说的:

“要想时刻跟随并理解机器学习的最新潮流很难,尤其在深度学习领域更是如此。举个栗子,我读了好些关于Capsule网络的介绍,但我还是无法理解其工作原理。”

@debau的回答让我们感到了深深的绝望:

“我希望我能理解我自己的论文...” (这就过分了吧...)

也有卖萌的,比如网友@oursland的回答:

“我曾经做到了这一点。然后我又把所有东西给忘掉了(雷锋网注:@oursland这里用的是机器学习中的“灾难性遗忘”的梗)。这当中一定有一套炒鸡糟糕的超参数,或者其他的什么东西作怪。:V ”

网友@andyspl也声称做到了这一点:

“握爪!我试图将这些东西写下来,但我的笔记本边上的空白太小啦~”

费马大定理:“我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下......”

嗯,以上的笑点,只有做机器学习的理工男才懂......

而得票最高的是Reddit网友@stochastic_gradient富有哲理的回答:

“没有人会完全理解(机器学习的所有概念)。每一篇发表在Arxiv的论文所讲的,实际上都是作者已经理解、但之前从未有人理解过的东西。

做机器学习研究,的确100%的是一件你需要和你不能完全理解的东西打交道的事儿。任何吸引你的事情都源于你对它的不了解。矛盾的是,即便人们知道解释这些事情是他们的工作,但他们仍然会对此有很大的不安。”

这或许也正是机器学习的迷人之处吧。

对于这个问题,现在正在机器学习路上的你又有什么看法呢?如果你想了解关于该问题的更多讨论,请移步Reddit:

https://www.reddit.com/r/MachineLearning/comments/7f5pyt/d_those_who_are_working_professionally_in_ml/?st=jaeda5qz&sh=82900c00

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-11-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

Facebook 开源机器学习库 TorchCraft(附 LeCun 深度学习教学视频)

【新智元导读】Facebook 日前开源了机器学习库 TorchCraft,方便研究人员使用控制器,编写能够玩星际争霸游戏的智能代理。此外,本周五 FAIR 主...

4047
来自专栏企鹅号快讯

为什么神经网络会把乌龟识别成步枪?现在的 AI 值得信任吗?

概要:人工智能的快速发展的确值得欣喜,但快速发展的背后还有各种不完善的地方。 人工智能的快速发展的确值得欣喜,但快速发展的背后还有各种不完善的地方。比如,前不久...

1676
来自专栏新智元

神经形态计算的新方法:人造神经元计算速度超过人脑

来源:科学网 编辑:张章 转载编辑:张乾 【新智元导读】一种以神经元为模型的超导计算芯片,能比人脑更高效快速地加工处理信息。近日刊登于《科学进展》的新成果,或许...

3369
来自专栏大数据文摘

【Nature封面文章】大脑词汇地图(附视频)

1384
来自专栏新智元

【终极算法】机器学习五大学派,终极算法能否一统江湖

【新智元导读】什么是终极算法?算法已在多大程度上影响我们的生活?本文介绍了著名算法专家,机器学习领域的先驱人物 Pedro Domingos 的新书《终极算法》...

42913
来自专栏新智元

图灵奖得主、贝叶斯之父 Judea Pearl 谈深度学习局限,想造自由意志机器人

【新智元导读】人工智能领域最高荣誉图灵奖的获得者,贝叶斯之父 Judea Pearl 日前接受 Edge 的采访。他谈到自己发明贝叶斯理论的过程,谈到了当下火热...

4039
来自专栏企鹅号快讯

听说机器已经开始给人类歌手打分了,它能听懂人的歌声吗?

音乐类竞技节目层出不穷,台上你方唱罢我登场,台下专业评审和现场观众热情高涨:这句唱得好,加分!那句跑调了,减分!歌手唱哭了,满分!此时,如果有一个毫无感情色彩的...

2019
来自专栏AI科技评论

AI的发展已经失去了方向?人工智能哲学学家Aaron Sloman IJCAI演讲

Aaron Sloman专注人工智能哲学领域有几十年了,这项学科认为人们应该从根本上通过概念化自然界中的物体,为AI研究打下基础,Sloman还认为,现在的AI...

2566
来自专栏我分享我快乐

广告设计中的 “色彩”对比——使用“色相饱和度”

前言:学生们在学习ps软件的过程中非常的认真与努力,所以对于软件的使用可以说已经很熟练了,可是为什么当我们给学生安排一些原创设计需求的时候,学生却有种无从下手的...

2708
来自专栏新智元

NLP 60年沉思录:Finding a Voice

【新智元导读】《经济学人》1月5日发表万字长文,回顾了机器语言技术长达60多年的发展历程,全文分为五个部分:人机对话、语音识别、机器翻译、语义理解和未来展望。文...

3284

扫描关注云+社区