讨论 | 你是否遇到过你完全不能理解的机器学习概念?

俗话说:隔行如隔山。但就算同一座山,有的时候因为“山”太大,未能爬到顶峰的人往往很难一窥整座山的全貌。

这不,AI科技评论在Reddit的机器学习版块就发现了一个很热烈的讨论,题目叫做:

机器学习专业的研究僧们进来说一说,你是否遇到过你完全不能理解的机器学习概念?

Those who are working professionally in ML and/or academics who have completed graduate-level coursework in ML: Are there any ML concepts that you don't quite fully grasp?

在问题下也有不少有意思的回答,AI科技评论整理了部分回答,与机器学习的“炼丹师”们共勉。

排在最前面的是@Leonoel讲述的一个高票故事:

“故事时间。

我喜欢和我的学生讲这个故事来激励他们,同时也希望能减轻他们的‘不懂装懂综合症’。

在NIP 2013上,当时有一位演讲者的演讲我完全听不懂。这是我博士的最后一年,这让我产生了警觉。我开始感觉很糟:作为一个新出炉的博士,我竟然没有能从NIPS的主题报告中学到任何东西!

当时坐在我旁边的两个朋友,其中一位是UC Berkeley的Michael Jordan,另一位在波士顿和Andrew McCallum一起做研究。这两位教授在机器学习界的大名如雷贯耳,所以我想当然的想,他们应该从这个报告中学到不少东西。

但最后,他们告诉我,他们同样听得一脸懵逼。

这个故事的含义是:机器学习是一个巨大的领域,如果你在你自己的领域花了足够多的时间,你很有可能难以对其他领域了如指掌。不要浪费你的时间去了解每一件事情。

还有另一个例子:我有个朋友是普林斯顿的数学家,但他从来没有理解过机器学习背后的数学,因为他主要是做数学理论研究的。”

在这个回答下,网友@iamiamwhoami做了补充说明:

“你在应用领域社区混久了就会感觉到,有的人真的是不怎么擅长解释他们的研究。”

@gionnelles也做出了类似的回答:

“如果有人声称他了解机器学习领域的所有东西,这绝壁是撒谎或者是错误的。机器学习领域太过广泛,研究进展太快,这意味着人们可以成为直接接触他们所在细分领域的专家,并聪明地讨论其他部分,但总有新的东西值得学习。”

甚至一些机器学习基础的重要理论如RNN和反向传播理论,不少人也表示有诸多理解难点,例如网友@klop2031就这么说:

“RNN的递归怎么绕,以及反向传播如何通过时间起作用,对我来说仍然一团乱麻。我仍然需要通过数学方式来理解,同样,对比分歧的原理如何我也不大清楚。”

好不容易弄懂了反向传播,却发现Hinton老爷子又有了新理论。@wdroz是这么说的:

“要想时刻跟随并理解机器学习的最新潮流很难,尤其在深度学习领域更是如此。举个栗子,我读了好些关于Capsule网络的介绍,但我还是无法理解其工作原理。”

@debau的回答让我们感到了深深的绝望:

“我希望我能理解我自己的论文...” (这就过分了吧...)

也有卖萌的,比如网友@oursland的回答:

“我曾经做到了这一点。然后我又把所有东西给忘掉了(雷锋网注:@oursland这里用的是机器学习中的“灾难性遗忘”的梗)。这当中一定有一套炒鸡糟糕的超参数,或者其他的什么东西作怪。:V ”

网友@andyspl也声称做到了这一点:

“握爪!我试图将这些东西写下来,但我的笔记本边上的空白太小啦~”

费马大定理:“我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下......”

嗯,以上的笑点,只有做机器学习的理工男才懂......

而得票最高的是Reddit网友@stochastic_gradient富有哲理的回答:

“没有人会完全理解(机器学习的所有概念)。每一篇发表在Arxiv的论文所讲的,实际上都是作者已经理解、但之前从未有人理解过的东西。

做机器学习研究,的确100%的是一件你需要和你不能完全理解的东西打交道的事儿。任何吸引你的事情都源于你对它的不了解。矛盾的是,即便人们知道解释这些事情是他们的工作,但他们仍然会对此有很大的不安。”

这或许也正是机器学习的迷人之处吧。

对于这个问题,现在正在机器学习路上的你又有什么看法呢?如果你想了解关于该问题的更多讨论,请移步Reddit:

https://www.reddit.com/r/MachineLearning/comments/7f5pyt/d_those_who_are_working_professionally_in_ml/?st=jaeda5qz&sh=82900c00

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-11-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏钱塘大数据

【AI的正面与侧面】披着光鲜的外衣的“数据民工”

像是一场明星演唱会,舞台上灯光华美,主角激情澎湃,粉丝呐喊欢呼,场面一片火爆,而幕后忙忙碌碌的那些人,who cares,人工智能行业大抵如此。繁荣光鲜的背后,...

3355
来自专栏AI科技评论

重磅 | 美国西北大学新系统在智力测试中超越75%民众,人类的推理能力也不及AI了?

你听过瑞文氏标准推理测试(Raven’s Progressive MatriCES)么?上面这张图就是一道标准的瑞文氏测试题目,是不是很眼熟?在公务员考试、一般...

3375
来自专栏AI科技大本营的专栏

开工了!三位大咖给你指路:未来 3~5 年内,哪个方向的机器学习人才最紧缺?

十一长假结束,收心归来,重新投入工作。如何能克服假期综合症呢?如何快速收心?今天营长就携三位大咖来为你打打鸡血,指引指引未来的路。他们将从自身的工作经历和学习经...

36812
来自专栏腾讯高校合作

【犀牛鸟论道】社会传播学的若干课题与实践

社会传播学的若干课题与实践 贺鹏、易玲玲、高瀚、陈川 腾讯微信数据中心社会传播组 [摘要]俗话说“酒香不怕巷子深”,表面上说的是酒香引人,实际上是指好酒在街坊邻...

3205
来自专栏大数据文摘

李飞飞:我们怎么教计算机理解图片

21813
来自专栏新智元

【柯洁战败解密】AlphaGo Master最新架构和算法,谷歌云与TPU拆解

【新智元发自中国乌镇】乌镇人工智能峰会进入第二天,哈萨比斯、David Silver和Jeff Dean等谷歌高管纷纷发表演讲。他们对AlphaGo 2.0的新...

3485
来自专栏新智元

比爬楼梯更难!伯克利CMU让双足机器人在乱石间跨越行走

【新智元导读】最近,加州大学伯克利分校和卡内基梅隆大学,展示了ATRIAS足式机器人能够在随机变换的障碍地形中行走的过程:尽管踏脚石高度和之间的宽度随机变化,但...

620
来自专栏数据的力量

如何成长为顶级数据分析师和数据挖掘师?

1656
来自专栏新智元

博鳌AI同传遭热议!腾讯翻译君负责人李学朝、讯飞胡郁有话说

---- 【新智元导读】首次正式亮相国际级会议的AI同传,腾讯翻译君不仅仅代表了自己,还代表了整个AI智能翻译业界。近几天AI同传遭遇社会嘲笑,对此,腾讯翻译君...

3248
来自专栏数据派THU

独家 | 一文读懂社交网络分析-下(应用、前沿、学习资源)

本文主要阐述: 社交网络分析的应用 社交网络前沿研究 学习资料 参考资料 浏览前三章的内容请见上篇(2017年9月26日头条)。 四. 社交网络分析的应用 1....

27010

扫码关注云+社区