制定「机器学习」学习计划【1】

IT 行业发展迅速,各种新名词此起彼伏。身处这样一个热点行业,学习是必须的。

大数据、AI(人工智能)相继席卷世界后,作为程序员,真得学点机器学习了。具体为什么大家还是自己思考一下吧——本文的重点不在于讲解Machine Learning到底有什么用,而是讲如何从0开始自学它。

之前我们讲过,有效学习三要点:目标明确、系统性强、足够深入,三者缺一不可。

既然是定制针对自己的学习计划,那么势必要让计划符合这三个要素。

那么首先,最重要的就是要确定学习目标!本文的重点也就在于此。

制定「机器学习」学习计划——明确学习目标

在目标的指引下,比较容易找到什么“有用”——虽然有点功利,但不得不承认,“有用”与否是大多数人产生驱动力的重要所在。

确定清晰的目标

所有的目标都有一个相对“大”的前景。比如,为什么要学习“机器学习”呢?因为我想找和AI相关的技术工作。

但是要注意,这个目标如果仅仅停留在:“我要做AI”,是不能称之为一个目标的。真正的目标必须具有可实施性,并最终体现为实施计划。

想要入行AI,先搞清楚几件事:

  • 目前真正落地的AI领域都有哪些?
  • 每个领域有什么样的代表企业?
  • 这些企业中,都有什么样的技术岗位?
  • 每种岗位哦需要什么入门条件?

至少要能够定位到你的目标岗位,明确了这个/类岗位的技术要求,才有可能确定需要学习的内容有哪些,从而选择到正确的培训课程。

一步步划定目标

但是怎么能知道这些呢?笔者个人推荐如下调研步骤:

Step 1. 先确定一个领域(图像、语音、NLP等等)

可能你本来就有特别感兴趣的领域;或者你对某一种技术,比如人脸识别,特别兴趣,那么可以直接由此入手。

如果你本来对AI了解不多,只是想做当前市场上最热门的领域,那也比较好办。多爬一些招聘网站、职场社交媒体的招聘信息,做一下数据分析,看看哪些领域招的人最多,薪水最高。

Step 2. 了解本领域当前的科研状况

最简单的方法:找十篇本领域核心期刊或会议的论文,读一遍。

用Google找论文还是比较赞的,而且相关度排序综合了论文的成果贡献,作者的学术地位和新颖度。

如果方便用Google,直接输入领域相关keyword,取前3-5篇拿来读。读后再根据阅读中遇到的问题、产生的兴趣回溯寻找其引用文献,或者重新搜索。

真的能认真读进去10篇比较新的论文,哪怕是普通博士生发表的,也能让你对一个学术领域有最基本的理解了。

Step 3. 了解本领域理论的落地技术以及相关企业

AI作为一个新兴方向,很多领域还处在研究阶段,真正能够应用到现实产品中的领域相当有限。

有代表性不过就是:语音识别/合成,图片/人脸识别,和NLP的一些分散应用。

当然并不是说尚未投入使用的技术就不值得去了解或者投身。比如现今热点中的热点——自动驾驶——尚处于研究性质远超实用的探索阶段,虽然很多公司都在做,但其实并没有实际的投入真实世界使用。

此处只是说,落地技术的范围并不算太广,了解起来投入也有限。

有了目标技术再找企业就相对容易多了。虽然大公司掌控了当前AI领域的绝大多数人才和资源,但是也有越来越多的小企业在具体技术点上发力。

普遍来说,进大公司是为了公司,而进小公司则是为了跟人。而AI行业又是一个强学术背景的行业,一个公司也好,团队也罢,如果连一个有一些最起码学术建树的博士都没有,那能走多远真的不好说。

从这一点来看,step 2的调研过程也可以应用到此处。如果有感兴趣的小公司,尤其是刚刚创业不久的startup,不妨先评估一下技术合伙人的学术水平。

Step 4. 了解具体岗位的招聘需求

这里的具体岗位,到并不一定指XXX公司的XXXX岗位,而是指同一类型公司同一技术角色的相对普遍要求。

AI行业的技术岗位,按角色可以简单地分为三类: 角色1:科学家——研究理论,开发/改进算法; 角色2:工程师——结合业务,训练模型; 角色3:工程辅助——选择、清洗、标注数据等。 从目前实践来看,一个团队中,如果工程辅助不是外包给第三方的话,工程师本身也要肩负工程辅助的责任。或者虽然内部有分工,但工程师和工程辅助都属于一个团队,在职衔上也没有明显区别。 一般来说,如果不是科班出身,没有在学校读到相关专业博士毕业,在入行的时候就不必指望AI科学家了。对于一般人而言,需要确定的是角色2和3 而已。

当你选定了公司之后,注意先看看同等类型公司,至少有代表性的那些,角色2和3是分开的还是合并在一起的。这一点,通过招聘启事的职位描述就应该可以找到。

从描述来看,角色2和角色3是不同成员来分担时,2显然比3 cool多了。但正因为如此,两者的能力要求必然也有区别。

领域、企业和角色共同定义了岗位之后,再根据岗位需求来反推需要学习的内容,就是有的放矢了。

避免误入“捷径 ”

虽然推荐上述路径,但是笔者确实知道,很多人喜欢走“捷径“——去招聘网站用AI、人工智能等关键词搜索一堆职位,看看那些职位要求的工具和语言是什么,直接去学就好了。相当于从step1直接跳到了最后。

反正现在大多数职位都要求Python,Tensorflow,直接报个班学学怎么用Python调用现成的算法,或者怎么用tensorflow处理数据不就好了?何必那么麻烦,还要看什么论文,学什么理论。

这种想法,属于典型的被“捷径“误导。在AI行业从事技术工作,哪怕是做角色3的工程辅助工作,如果想要做得长久,有所发展,理论学习是必不可少的。

要详细解释这一点,完全可以单独开个chat了。此处且举个直观的例子:

工具就像是武器,学会使用一种工具只是学会了使用这种武器的最基本的招式和套路。而理论学习则是学习策略,决定了未来在真实对战中,遇到对手攻击时,你选取哪些招式套路,如何组合起来去迎敌。

不排除现在有些公司跟风慕名,想做AI,自己没有人才,就直接招聘,要求会用XX工具就可以了。只学会用工具做一些基本操作,也许就可以应聘这样的职位。但是这样的职位能长久吗?能解决真正的问题,产生价值吗?做这样的工作,能有长进提高个人价值吗?

为了个人长远的职业发展,我们还是扎实打牢基础。

未完待续……

原文发布于微信公众号 - 悦思悦读(yuesiyuedu)

原文发表时间:2017-11-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

除了深度学习,你需要知道AI技术的23个方向 | 机器之心首份技术报告

38012
来自专栏数据科学与人工智能

【数据】银行业9大数据科学应用案例

在银行业中使用数据科学不仅仅是一种趋势,它已成为保持竞争的必要条件。 银行必须认识到,大数据技术可以帮助他们有效地集中资源,做出更明智的决策并提高绩效。

2183
来自专栏ATYUN订阅号

赫尔辛基大学AI基础教程:关于预测未来(6.1节)

说些你可能会感到失望的话,我们不是巫师,不会有一个水晶球可以向我们展示未来世界会是什么样子,以及AI如何改变我们的生活。

1284
来自专栏人工智能头条

人工智能进展惊人,但怎么解决关乎生死的医学疾病?

1032
来自专栏数据猿

商汤科技联合创始人徐冰:人工智能的特殊商业模式探索(内附PPT)

数据猿导读 深度学习是如何做到的?算法在超过人类后,现在到底在哪些行业进行应用了?服务了哪些业务,比如安防监控、互联网金融、机器人等,它们是否已经在用,哪些地方...

5197
来自专栏机器之心

观点 | MSRA副院长周明:未来5到10年是NLP的成熟期

机器之心原创 作者:虞喵喵 「接下来,NLP 将迎来 60 多年来发展最迅速的时期。」 6 月 1 日,在微软亚洲研究院(MSRA)的自然语言处理(NLP)主题...

41011
来自专栏AI科技评论

阿里巴巴首场NLP学术研讨会,顶尖名师与企业工程师碰撞产学研火花

阿里巴巴达摩院机器智能技术实验室自然语言理解研究组所举办的本次会议旨在搭建高校学术与企业实践的交流平台,增进校企合作,创新自然语言处理新技术。

1566
来自专栏AI科技评论

华为AI首席科学家裴健:产业AI化的核心是数据及对它的挖掘

AI科技评论按:都说人工智能的大潮已经到来,但是人工智能应该如何落地与产业结合,产生实际的效果?在ACM SIGKDD主席、加拿大西蒙弗雷泽大学计算科学学院教授...

3869
来自专栏机器之心

业界 | 黄仁勋全面解读英伟达发展战略:打造面向未来的AI技术平台

机器之心原创 作者:李泽南 9 月 26 日,英伟达 GTC 大会中国站在北京开幕。在大会第一天上午的 Keynote 中,英伟达 CEO 黄仁勋介绍了 Ten...

37210
来自专栏机器人网

人工智能发展锁定新目标:理解视频

人工智能技术发展到现在已经很强大,AlphaGo已经把众多围棋世界冠军踩在脚下,让大家心生恐惧,就算在图像识别这件小事上,也比人类更好更快,然而,科学家认为这还...

3637

扫码关注云+社区

领取腾讯云代金券