分别用sklearn和tensorflow做房价预测

本篇是后面用tensorflow做回归时的一个参照,忍不住要说的是sklearn真是简单好用,要不是他没有卷积cnn等时髦模型,真是不想用其他家的了。

经典的sklearn集成模型

结果:

真是又快又准啊!由于该数据的已经是被打乱了,非原顺序,所以看起来是这样

另外参数优选的代码被注释掉了,感兴趣的可以自己调参。

卷积神经网路CNN

既然sklearn已经足够简单高效,为啥要用卷积神经网络(cnn)呢,江湖传言它有两个大优势:

1、sklearn需要人工进行特征优选,cnn会进行自动优选特征

2、随着训练数据的增多,sklearn的准确性就没啥大变化了,cnn则是越来越准,没有瓶颈。说实在的就boston房价这个数据也就506行,13个特征(列),对cnn来说实在太少了,没个10万行数据,都看不出它的优势;

另外cnn虽然不用人工特征优选,但是搭建它的拓扑结构实在是个难搞的事,最让人炸裂的是tensorflow的结构,真是让人费解,关于它的结构网上很多介绍,我就不说了,但是用cnn做回归计算的文章非常罕见,请点赞!上代码

#参考http://blog.csdn.net/jerry81333/article/details/52979206 周莫烦的系列视频教程,跪地推荐

结果是这样的:

上文中只训练了200次,其实正常来说都是1000次起的,无奈手里只有小mac mini,显卡是N卡的同学可以用tensorflow的gpu版跑跑试试。

RNN之递归神经网路LSTM

在tensorflow里RNN才是做回归计算的正规军,其中LSTM更是让人工智能有了记忆,如果cnn最适合做的是图像识别,那么LSTM就是视频识别。网上的教程多是用正余弦数据在做预测,输入输出都是一维,我这用波士顿房价,输入是13个特征!

注意与前面两个模型不同的是,没有用train_test_split把训练数据分割,而是用的时序数据。

lstm输入和输出都是时序数据,是尊重时间的,和上两篇用的交叉数据集是不一样的,所以结果是这样的:

via:http://blog.csdn.net/baixiaozhe/article/details/54410313

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2017-09-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI2ML人工智能to机器学习

图文并茂,卡曼滤波

我务必向大家介绍卡尔曼滤波器(Kalman Filter),因为它之所能, 忒惊人!

8320
来自专栏AI科技评论

动态 | Yann LeCun爆惊人言论:深度学习已死?

AI科技评论按:深度学习领域最知名的学者之一 Yann LeCun 今日在自己facebook 上发表的一篇短文,瞬间引爆了人工智能关注者们的朋友圈。这条动态讲...

389110
来自专栏机器之心

学界 | 微软提出深度学习新架构:使用问答系统来得到语法上可解释的表征

选自arXiv.org 机器之心编译 参与:黄玉胜 近日,微软公布的一篇新论文提出了一种新架构,它的内部表征(在执行文本问答任务时通过端到端的优化来学习的表征...

32040
来自专栏深度学习

机器学习教材中的 7 大经典问题

一、神经网络不宜超过三层 这是最有名错误判断,现在的教科书几乎已经不再有这样的结论,但如果看15年、20年前的机器学习教科书,会有一个很有趣的结论:神经网络不能...

40280
来自专栏量子位

实录 | 旷视研究院详解COCO2017人体姿态估计冠军论文(PPT+视频)

主讲人:王志成 | 旷视研究院研究员 屈鑫 整理编辑 量子位 出品 | 公众号 QbitAI 12月13日晚,量子位·吃瓜社联合Face++论文解读系列第二期开...

33640
来自专栏祝威廉

深度学习思考

大部分机器学习算法(包括深度学习),其实是在一个理想空间里(接下来我们会以三维空间为例子)寻找一个最大/最小值。三维空间是无限大的,在某个实际场景,假设我们有了...

8930
来自专栏目标检测和深度学习

如何从零开始构建深度学习项目?这里有一份详细的教程

选自Medium 作者:Jonathan Hui 机器之心编译 在学习了有关深度学习的理论课程之后,很多人都会有兴趣尝试构建一个属于自己的项目。本文将会从第一步...

37780
来自专栏机器学习算法与Python学习

手把手教你从零搭建深度学习项目(可下载PDF版)

27840
来自专栏量子位

数据不够大,别玩深度学习?正反双方撕起来了

李林 问耕 发自 凹非寺 量子位 报道 | 公众号 QbitAI 争论,随时可能爆发。 比方当你看到一篇名为《数据不够大,别玩深度学习》(Don’t use d...

28850
来自专栏人工智能头条

模仿学习(Imitation Learning)完全介绍

61850

扫码关注云+社区

领取腾讯云代金券