前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Pytorch 0.3发布:实现多方面提速,增加对ONNX支持 | 快讯

Pytorch 0.3发布:实现多方面提速,增加对ONNX支持 | 快讯

作者头像
AI研习社
发布2018-03-16 16:17:04
8460
发布2018-03-16 16:17:04
举报
文章被收录于专栏:AI研习社

2017 年初,Facebook 在机器学习和科学计算工具 Torch 的基础上,针对 Python 语言发布了一个全新的机器学习工具包 PyTorch。一经发布,这款开源工具包就受到广泛关注和讨论,经过几个月的发展,目前 PyTorch 已经成为从业者最重要的研发工具之一。经过将近一年的发展,日前,迎来了 PyTorch 0.3.0 版本。

根据官方文档的介绍,此次增加了多个函数和功能,多方面的性能均实现提升。

重大变更

0.3 版本中删掉了 Variable.reinforce() 等随机函数,因为它们的功能有限,并且会影响到性能。设置随机函数的初衷是为了避免采样值的 book-keeping,在实际中,由于各种各样的原因,用户的代码中仍然会包括 book-keeping。他们引入了 torch.distributions 包来代替随机函数。

之前的代码如下:

代码语言:javascript
复制
probs = policy_network(state)
action = probs.multinomial()
next_state, reward = env.step(action)
action.reinforce(reward)
action.backward()

现在的代码如下:

代码语言:javascript
复制
probs = policy_network(state)# NOTE: categorical is equivalent to what used to be called multinomialm = torch.distributions.Categorical(probs)
action = m.sample()
next_state, reward = env.step(action)
loss = -m.log_prob(action) * reward
loss.backward()

新的功能

1、目前,有些损失函数能直接计算 mini-batch 中每个 sample 的损失值。

2、构建了一个 in-built Profiler,能对模型进行瓶颈分析,这个 Profiler 同时支持 CPU 和 CUDA 模型。

更多信息可以参见(http://t.cn/RY1frZ8)

3、增加 Higher order gradients 模块,支持如下层:

  • ConvTranspose, AvgPool1d, AvgPool2d, LPPool2d, AvgPool3d, MaxPool1d, MaxPool2d, AdaptiveMaxPool, AdaptiveAvgPool, FractionalMaxPool2d, MaxUnpool1d, MaxUnpool2d, nn.Upsample, ReplicationPad2d, ReplicationPad3d, ReflectionPad2d
  • PReLU, HardTanh, L1Loss, SoftSign, ELU, RReLU, Hardshrink, Softplus, SoftShrink, LogSigmoid, Softmin, GLU
  • MSELoss, SmoothL1Loss, KLDivLoss, HingeEmbeddingLoss, SoftMarginLoss, MarginRankingLoss, CrossEntropyLoss
  • DataParallel

4、优化器

  • optim.SparseAdam:能实现适用于稀疏张量的简单亚当算法
  • 优化器中增加了 add_param_group 函数,能在构建好的优化器中增加新的参数组。

除此之外,还增加了新的张量函数和功能,在新版本中,能通过 ONNX 将模型迁移到其他框架上。另外,在加速方面,重写 gpu kernel 之后,softmax 和 log_softmax 的速度能实现 4-256 倍的提升;在分布式 AllReduce 中,能实现 2.5-3 倍的性能提升;torch.norm 函数的 backward 能实现 1.5 倍的加速;pack_padded_sequence 的性能也有提升。

AI研习社编译整理,具体的介绍可以参加说明文档(http://t.cn/RYnuJbG),里面有详细说明。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-12-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI研习社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 重大变更
  • 新的功能
相关产品与服务
TI-ONE 训练平台
TI-ONE 训练平台(以下简称TI-ONE)是为 AI 工程师打造的一站式机器学习平台,为用户提供从数据接入、模型训练、模型管理到模型服务的全流程开发支持。TI-ONE 支持多种训练方式和算法框架,满足不同 AI 应用场景的需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档