前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R语言与机器学习学习笔记(分类算法

R语言与机器学习学习笔记(分类算法

作者头像
学到老
发布2018-03-19 11:26:57
1.9K0
发布2018-03-19 11:26:57
举报

logistic回归及其MLE

当我们考虑解释变量为分类变量如考虑一个企业是否会被并购,一个企业是否会上市,你的能否考上研究生

这些问题时,考虑线性概率模型P(yi =1)= β0 + β1xi 显然是不合适的,它至少有两个致命的缺陷:1、概率估

计值可能超过1,使得模型失去了意义;(要解决这个问题并不麻烦,我们将预测超过1的部分记为1,低于0的

部分记为0,就可以解决。这个解决办法就是计量里有一定历史的tobit模型)2、边际效应假定为不变,通常来说

不合经济学常识。考虑一个边际效应递减的模型(假定真实值为蓝线),可以看到线性模型表现很差。

但是sigmoid函数去拟合蓝线确实十分合适的。于是我们可以考虑logistic回归模型:

假定有N个观测样本Y1,Y2,…,YN,设P(Yi=1|Xi)=π(Xi)为给定条件Xi下得到结果Yi=1的条件概率;而在同

样条件下得到结果Yi=0的条件概率为P(Yi=0|Xi)=1-π(Xi),于是得到一个观测值的概率P(Yi)=π(Xi)Yi[1-π(Xi)]

1-Yi假设各观测独立,对logistic回归模型来说,其对数似然函数为:

于是便可求解出logistic模型的MLE。

二、logit还是probit?

虽说sigmoid函数对边际递减的模型拟合良好,但是我们也要知道S型函数并非仅sigmoid函数一个,绝

大多数的累积分布函数都是S型的。于是考虑F-1(P)(F为标准正态分布的累积分布函数)也不失为一个

很好的选择。像这样的,对概率P做一点变换,让变换后的取值范围变得合理,且变换后我们能够有办法进

行参数估计的,就涉及到广义线性模型理论中的连接函数。在广义线性模型中我们把log(P/(1-P))称为logit,

F-1(P)(F为标准正态分布的累积分布函数)称为probit。那么这里就涉及到一个选择的问题:连接函数

选logit还是probit?logistic回归认为二分类变量服从伯努利分布,应当选择logit,而且从解释的角度说,p/

(1-p)就是我们常说的odds ratio,也就是软件报告中出现的OR值。

但是probit也有它合理的一面,首先,中心极限定理告诉我们,伯努利分布在样本够多的时候就是近似正态分布的;其次,从不确定性的角度考虑,probit认为我们的线性概率模型服从正态分布,这也是更为合理的。

我们来看一下经过变换后,自变量和P的关系是什么样子的:

如果你确实想知道到底你的数据用哪一个方法好,也不是没有办法,你可以看一下你的残差到底是符合

logit函数呢还是符合probit函数,当然,凭肉眼肯定是看不出来的,因为这两个函数本来就很接近,你可以通

过函数的假定,用拟合优度检验一下。但通常,估计不会有人非要这么较真,因为没有必要。但是有一点是

要注意的,logit模型较probit模型而言具有厚尾的特征,这也是为什么经济学论文爱用logit的原因。

我们以鸢尾花数据中的virginica,versicolor两类数据分类为例,看看两种办法分类有无差别。

probit.predictions

versicolor virginica

versicolor 47 3

virginica 3 47

logit.predictions

versicolor virginica

versicolor 47 3

virginica 3 47

从上图与比较表格均可以看出,两者差别不大。

三、多项式logit与order logit

对于二项分类模型的一个自然而然的推广便是多项分类模型。

我们借鉴神经网络里提到的异或模型,有:

按照上面这种方法,给定一个输入向量x,获得最大hθ(x)的类就是x所分到的类。

选择最大的 hθ(x)十分好理解:在类别选择问题中,不论要选的类别是什么,每一个类别对做选择的经济个体来说都有或多或少的效用(没有效用的类别当然不会被考虑) ,一个类别的脱颖而出必然是因为该类别能产生出最高的效用。

我们将多项logit模型的数学表述叙述如下:

假定对于第i个观测,因变量Yi有M个取值:1,2,…,M,自变量为Xi,则多项logit模型为:

与logistic回归的似然估计类似,我们可以很容易写出多项logit的对数似然函数:

多项 Logit模型虽然好用,但从上面的叙述可以看出,多项 Logit 模型最大的限制在于各个类别必须是对

等的,因此在可供选择的类别中,不可有主要类别和次要类别混杂在一起的情形。例如在研究旅游交通工具的

选择时,可将交通工具的类别粗分为航空、火车、公用汽车、自用汽车四大类,但若将航空类别再依三家航空

公司细分出三类而得到总共六个类别,则多项 Logit 模型就不适用,因为航空、火车、公用汽车、自用汽车均

属同一等级的主要类别,而航空公司的区别则很明显的是较次要的类别,不应该混杂在一起。在这个例子中,

主要类别和次要类别很容易分辨,但在其他的研究中可能就不是那么容易,若不慎将不同层级的类别混在一起

,则由多项 Logit 模型所得到的实证结果就会有误差。

对于分类模型,我们还会遇到被解释变量中有分类变量的情形。对于连续变量解释离散变量,且被解释的离散变量是有顺序的(这个是和多项logit最大的区别)的情形,我们就需要考虑到order logit模型。

其数学模型叙述如下:

其中,F(.)表示累积分布函数,当F表示正态分布的分布函数时,对应的是order probit;F表示

logistic分布时,变对应order logit。

与logistic分布类似,我们可以很容易写出其对数似然函数:

四、dummy variable

在logistic回归中,经常会遇到解释变量为分类变量的情形,比如收入:高、中、低;地域:北京、上海

、广州等。这里对分类变量而言就涉及一个问题:要不要将分类变量设置dummy variable?

这个问题的答案在线性模型中很显然,必须要这么做!!!如果我们不设置哑变量,而是单纯地赋值:北

京=1,上海=2,广州=3,即我们将自变量视作连续性的数值变量,但这仅仅是一个代码而己,并不意味着地域间

存在大小次序的关系,即并非代表被解释变量(响应变量)会按此顺序线性增加或减少。即使是有序多分类变量,

如家庭收入分为高、中、低三档,各类别间的差距也是无法准确衡量的,按编码数值来分析实际上就是强行规定

为等距,这显然可能引起更大的误差。

但是在logistic回归中,由于logit(p)变化的特殊性,在解释定序变量时,为了减少自由度(即解释变量个数),我们常常将定序变量(如家庭收入分为高、中、低)视为连续的数值变量,而且经济解释可以是XX每提高一个档次,相应的概率会提高expression(delta(XX))(expression的表达式还是很复杂的,不打了)。当然减少变量个数是以牺牲预测精度为代价的。毕竟数据处理是一门艺术而非一门技术,如何取舍还得具体问题具体分析。当然,非定序的分类变量是万万不可将其视为数值变量的。

五、广义线性模型的R实现

R语言提供了广义线性模型的拟合函数glm(),其调用格式如下:

glm(formula, family = gaussian, data,weights, subset,

na.action, start = NULL, etastart, mustart, offset,

control= list(...), model = TRUE, method = "glm.fit",

x =FALSE, y = TRUE, contrasts = NULL, ...)

参数说明:

Formula:回归形式,与lm()函数的formula参数用法一致

Family:设置广义线性模型连接函数的典则分布族,glm()提供正态、指数、gamma、逆高斯、Poisson、二项分

布。我们的logistic回归使用的是二项分布族binomial。Binomial族默认连接函数为logit,可设置为probit。

Data:数据集

鸢尾花例子使用的R代码:

logit.fit <- glm(Species~Petal.Width+Petal.Length,
family = binomial(link = 'logit'),
data = iris[51:150,])
logit.predictions <- ifelse(predict(logit.fit) > 0,'virginica', 'versicolor')
table(iris[51:150,5],logit.predictions)
probit.fit <- glm(Species~Petal.Width+Petal.Length,
family = quasibinomial(link = 'probit'),
data = iris[51:150,])
probit.predictions <- ifelse(predict(probit.fit) >0,'virginica', 'versicolor')
table(iris[51:150,5],probit.predictions)

程序包mlogit提供了多项logit的模型拟合函数:

mlogit(formula, data, subset, weights,na.action, start = NULL,
alt.subset = NULL, reflevel = NULL,
nests = NULL, un.nest.el = FALSE, unscaled = FALSE,
heterosc = FALSE, rpar = NULL, probit = FALSE,
R = 40, correlation = FALSE, halton = NULL,
random.nb = NULL, panel = FALSE, estimate = TRUE,
seed = 10, ...)
mlogit.data(data, choice, shape = c("wide","long"), varying = NULL,
sep=".",alt.var = NULL, chid.var = NULL, alt.levels = NULL,id.var = NULL, opposite = NULL, drop.index = FALSE,
ranked = FALSE, ...)

参数说明:

formula:mlogit提供了条件logit,多项logit,混合logit多种模型,对于多项logit的估计模型应写为:因变量~0|自变量,如:mode ~ 0 | income

data:使用mlogit.data函数使得数据结构符合mlogit函数要求。

Choice:确定分类变量是什么

Shape:如果每一行是一个观测,我们选择wide,如果每一行是表示一个选择,那么就应该选择long。

alt.var:对于shape为long的数据,需要标明所有的选择名称

选择wide的数据示例:

选择long的数据示例:

以fishing数据为例,来说明如何使用mlogit。

library(mlogit)

data("Fishing", package = "mlogit")

Fish <- mlogit.data(Fishing,shape = "wide",choice = "mode")

summary(mlogit(mode ~ 0 | income, data = Fish))

这个输出的结果与nnet包中的multinom()函数一致。由于mlogit包可以做的logit模型更多,所以这里就不在对nnet

包的multinom作介绍了,可以参见《根据Econometrics in R一书,将回归方法总结一下》一文。

程序包MASS提供polr()函数可以进行ordered logit或probit回归。用法如下:

polr(formula, data, weights, start, ..., subset, na.action,

contrasts = NULL, Hess = FALSE, model = TRUE,

method = c("logistic", "probit", "cloglog", "cauchit"))

参数说明:

Formula:回归形式,与lm()函数的formula参数用法一致

Data:数据集

Method:默认为order logit,选择probit时变为order probit模型。

以housing数据为例说明函数用法:

house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)

house.plr

summary(house.plr, digits = 3)

这些结果十分直观,易于解读,所以我们在这里省略所有的输出结果。

再看手写数字案例:

最后,我们回到最开始的那个手写数字的案例,我们试着利用多项logit重做这个案例。(这个案例的描述与数据参见《kNN算法》一章)

特征的选择可参见《神经网络》一章。

由于手写数字的特征选取很容易导致回归系数矩阵是降秩的,所以我们使用nnet包的multinom()函数代替mlogit()。

运行下列代码:

setwd("D:/R/data/digits/trainingDigits")
names<-list.files("D:/R/data/digits/trainingDigits")
data<-paste("train",1:1934,sep="")
for(i in 1:length(names))
assign(data[i],as.matrix(read.fwf(names[i],widths=rep(1,32))))
label<-factor(rep(0:9,c(189,198,195,199,186,187,195,201,180,204)))
feature<-matrix(rep(0,length(names)*25),length(names),25)
for(i in 1:length(names)){
feature[i,1]<-sum(get(data[i])[,16])
feature[i,2]<-sum(get(data[i])[,8])
feature[i,3]<-sum(get(data[i])[,24])
feature[i,4]<-sum(get(data[i])[16,])
feature[i,5]<-sum(get(data[i])[11,])
feature[i,6]<-sum(get(data[i])[21,])
feature[i,7]<-sum(diag(get(data[i])))
feature[i,8]<-sum(diag(get(data[i])[,32:1]))
feature[i,9]<-sum((get(data[i])[17:32,17:32]))
feature[i,10]<-sum((get(data[i])[1:8,1:8]))
feature[i,11]<-sum((get(data[i])[9:16,1:8]))
feature[i,12]<-sum((get(data[i])[17:24,1:8]))
feature[i,13]<-sum((get(data[i])[25:32,1:8]))
feature[i,14]<-sum((get(data[i])[1:8,9:16]))
feature[i,15]<-sum((get(data[i])[9:16,9:16]))
feature[i,16]<-sum((get(data[i])[17:24,9:16]))
feature[i,17]<-sum((get(data[i])[25:32,9:16]))
feature[i,18]<-sum((get(data[i])[1:8,17:24]))
feature[i,19]<-sum((get(data[i])[9:16,17:24]))
feature[i,20]<-sum((get(data[i])[17:24,17:24]))
feature[i,21]<-sum((get(data[i])[25:32,17:24]))
feature[i,22]<-sum((get(data[i])[1:8,25:32]))
feature[i,23]<-sum((get(data[i])[9:16,25:32]))
feature[i,24]<-sum((get(data[i])[17:24,25:32]))
feature[i,25]<-sum((get(data[i])[25:32,25:32]))
}
data1 <- data.frame(feature,label)
#降秩时mlogit不可用
#data10<- mlogit.data(data1,shape = "wide",choice = "label")
#m1<-mlogit(label~0|X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14+X15+X16+X17+X18+X19+X20+X21+X22+X23+X24+X25,data=data10)
library(nnet)
m1<-multinom(label ~ ., data = data1)
pred<-predict(m1,data1)
table(pred,label)
sum(diag(table(pred,label)))/length(names)
setwd("D:/R/data/digits/testDigits")
name<-list.files("D:/R/data/digits/testDigits")
data1<-paste("train",1:1934,sep="")
for(i in 1:length(name))
assign(data1[i],as.matrix(read.fwf(name[i],widths=rep(1,32))))
feature<-matrix(rep(0,length(name)*25),length(name),25)
for(i in 1:length(name)){
feature[i,1]<-sum(get(data1[i])[,16])
feature[i,2]<-sum(get(data1[i])[,8])
feature[i,3]<-sum(get(data1[i])[,24])
feature[i,4]<-sum(get(data1[i])[16,])
feature[i,5]<-sum(get(data1[i])[11,])
feature[i,6]<-sum(get(data1[i])[21,])
feature[i,7]<-sum(diag(get(data1[i])))
feature[i,8]<-sum(diag(get(data1[i])[,32:1]))
feature[i,9]<-sum((get(data1[i])[17:32,17:32]))
feature[i,10]<-sum((get(data1[i])[1:8,1:8]))
feature[i,11]<-sum((get(data1[i])[9:16,1:8]))
feature[i,12]<-sum((get(data1[i])[17:24,1:8]))
feature[i,13]<-sum((get(data1[i])[25:32,1:8]))
feature[i,14]<-sum((get(data1[i])[1:8,9:16]))
feature[i,15]<-sum((get(data1[i])[9:16,9:16]))
feature[i,16]<-sum((get(data1[i])[17:24,9:16]))
feature[i,17]<-sum((get(data1[i])[25:32,9:16]))
feature[i,18]<-sum((get(data1[i])[1:8,17:24]))
feature[i,19]<-sum((get(data1[i])[9:16,17:24]))
feature[i,20]<-sum((get(data1[i])[17:24,17:24]))
feature[i,21]<-sum((get(data1[i])[25:32,17:24]))
feature[i,22]<-sum((get(data1[i])[1:8,25:32]))
feature[i,23]<-sum((get(data1[i])[9:16,25:32]))
feature[i,24]<-sum((get(data1[i])[17:24,25:32]))
feature[i,25]<-sum((get(data1[i])[25:32,25:32]))
}
labeltest<-factor(rep(0:9,c(87,97,92,85,114,108,87,96,91,89)))
data2<-data.frame(feature,labeltest)
pred1<-predict(m1,data2)
table(pred1,labeltest)
sum(diag(table(pred1,labeltest)))/length(name)

经整理,输出结果如下:(左边为训练集,右边为测试集)

Tips: oddsratio=p/1-p 相对风险指数贝努力模型中 P是发生A事件的概率,1-p是不发生A事件的概率所以p/1-p是 发生与不发生的相对风险。OR值等于1,表示该因素对A事件发生不起作用;OR值大于1,表示A事件发生的可能性大于不发生的可能性;OR值小于1,表示A事件不发生的可能性大于发生的可能性。

Further reading:

Yves Croissant:Estimation of multinomial logit models in R : The mlogit Packages

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档