深度学习如何入门?

关于深度学习,网上的资料很多,不过貌似大部分都不太适合初学者。 这里有几个原因: 1. 深度学习确实需要一定的数学基础。如果不用深入浅出地方法讲,有些读者就会有畏难的情绪,因而容易过早地放弃。 2. 中国人或美国人写的书籍或文章,普遍比较难一些。我不太清楚为什么,不过确实是这样子的。 深度学习,确实需要一定的数学基础,但真的那么难么?这个,还真没有。不信?听我来给你侃侃。看完,你也会觉得没那么难了。

本文是针对初学者,高手可以无视,有不对的地方,还请多多批评指正。

这里,先推荐一篇非常不错的文章: 《1 天搞懂深度学习》,300 多页的 ppt,台湾李宏毅教授写的,非常棒。 不夸张地说,是我看过最系统,也最通俗易懂的,关于深度学习的文章。

这是 slideshare 的链接:http://www.slideshare.net/tw_dsconf/ss-62245351?qid=108adce3-2c3d-4758-a830-95d0a57e46bc&v=&b=&from_search=3

没梯子的同学,可以从我的网盘下:

链接:http://pan.baidu.com/s/1nv54p9R 密码:3mty

要说先准备什么,私以为,其实只需要知道导数和相关的函数概念就可以了。高等数学也没学过?很好,我就是想让文科生也能看懂,您只需要学过初中数学就可以了。

其实不必有畏难的情绪,个人很推崇李书福的精神,在一次电视采访中,李书福说:谁说中国人不能造汽车?造汽车有啥难的,不就是四个轮子加两排沙发嘛。当然,他这个结论有失偏颇,不过精神可嘉。

导数是什么,无非就是变化率呗,王小二今年卖了 100 头猪,去年卖了 90 头,前年卖了 80 头。。。变化率或者增长率是什么?每年增长 10 头猪,多简单。这里需要注意有个时间变量 --- 年。王小二卖猪的增长率是 10 头 / 年,也就是说,导数是 10. 函数 y=f(x)=10x+30,这里我们假设王小二第一年卖了 30 头,以后每年增长 10 头,x 代表时间(年),y 代表猪的头数。 当然,这是增长率固定的情形,现实生活中,很多时候,变化量也不是固定的,也就是说增长率也不是恒定的。比如,函数可能是这样: y=f(x)=5x²+30,这里 x 和 y 依然代表的是时间和头数,不过增长率变了,怎么算这个增长率,我们回头再讲。或者你干脆记住几个求导的公式也可以。

深度学习还有一个重要的数学概念:偏导数,偏导数的偏怎么理解?偏头疼的偏,还是我不让你导,你偏要导?都不是,我们还以王小二卖猪为例,刚才我们讲到,x 变量是时间(年),可是卖出去的猪,不光跟时间有关啊,随着业务的增长,王小二不仅扩大了养猪场,还雇了很多员工一起养猪。所以方程式又变了:y=f(x)=5x₁²+8x₂ + 35x₃ +30 这里 x₂代表面积,x₃代表员工数,当然 x₁还是时间。 上面我们讲了,导数其实就是变化率,那么偏导数是什么?偏导数无非就是多个变量的时候,针对某个变量的变化率呗。在上面的公式里,如果针对 x₃求偏导数,也就是说,员工对于猪的增长率贡献有多大,或者说,随着(每个)员工的增长,猪增加了多少,这里等于 35--- 每增加一个员工,就多卖出去 35 头猪. 计算偏导数的时候,其他变量都可以看成常量,这点很重要,常量的变化率为 0,所以导数为 0,所以就剩对 35x₃ 求导数,等于 35. 对于 x₂求偏导,也是类似的。 求偏导我们用一个符号 表示:比如 y/ x₃ 就表示 y 对 x₃求偏导。

废话半天,这些跟深度学习到底有啥关系?有关系,我们知道,深度学习是采用神经网络,用于解决线性不可分的问题。关于这一点,我们回头再讨论,大家也可以网上搜一下相关的文章。我这里主要讲讲数学与深度学习的关系。先给大家看几张图:

图 1. 所谓深度学习,就是具有很多个隐层的神经网络。

图 2. 单输出的时候,怎么求偏导数

图 3. 多输出的时候,怎么求偏导数。后面两张图是日语的,这是日本人写的关于深度学习的书。感觉写的不错,把图盗来用一下。所谓入力层,出力层,中间层,分别对应于中文的:输入层,输出层,和隐层。

大家不要被这几张图吓着,其实很简单的。干脆再举一个例子,就以撩妹为例。男女恋爱我们大致可以分为三个阶段: 1. 初恋期。相当于深度学习的输入层。别人吸引你,肯定是有很多因素,比如:身高,身材,脸蛋,学历,性格等等,这些都是输入层的参数,对每个人来说权重可能都不一样。 2. 热恋期。我们就让它对应于隐层吧。这个期间,双方各种磨合,柴米油盐酱醋茶。 3. 稳定期。对应于输出层,是否合适,就看磨合得咋样了。

大家都知道,磨合很重要,怎么磨合呢?就是不断学习训练和修正的过程嘛!比如女朋友喜欢草莓蛋糕,你买了蓝莓的,她的反馈是 negative,你下次就别买了蓝莓,改草莓了。

看完这个,有些小伙可能要开始对自己女友调参了。有点不放心,所以补充一下。 撩妹和深度学习一样,既要防止欠拟合,也要防止过拟合。所谓欠拟合,对深度学习而言,就是训练得不够,数据不足,就好比,你撩妹经验不足,需要多学着点,送花当然是最基本的了,还需要提高其他方面,比如,提高自身说话的幽默感等,因为本文重点并不是撩妹,所以就不展开讲了。这里需要提一点,欠拟合固然不好,但过拟合就更不合适了。过拟合跟欠拟合相反,一方面,如果过拟合,她会觉得你有陈冠希老师的潜质,更重要的是,每个人情况不一样,就像深度学习一样,训练集效果很好,但测试集不行!就撩妹而言,她会觉得你受前任 (训练集) 影响很大,这是大忌!如果给她这个映象,你以后有的烦了,切记切记!

深度学习也是一个不断磨合的过程,刚开始定义一个标准参数(这些是经验值。就好比情人节和生日必须送花一样),然后不断地修正,得出图 1 每个节点间的权重。为什么要这样磨合?试想一下,我们假设深度学习是一个小孩,我们怎么教他看图识字?肯定得先把图片给他看,并且告诉他正确的答案,需要很多图片,不断地教他,训练他,这个训练的过程,其实就类似于求解神经网络权重的过程。以后测试的时候,你只要给他图片,他就知道图里面有什么了。

所以训练集,其实就是给小孩看的,带有正确答案的图片,对于深度学习而言,训练集就是用来求解神经网络的权重的,最后形成模型;而测试集,就是用来验证模型的准确度的。

对于已经训练好的模型,如下图所示,权重(w1,w2...)都已知。

图 4

图 5

我们知道,像上面这样,从左至右容易算出来。但反过来呢,我们上面讲到,测试集有图片,也有预期的正确答案,要反过来求 w1,w2......,怎么办?

绕了半天,终于该求偏导出场了。目前的情况是:

1. 我们假定一个神经网络已经定义好,比如有多少层,都什么类型,每层有多少个节点,激活函数(后面讲)用什么等。这个没办法,刚开始得有一个初始设置(大部分框架都需要 define-and-run,也有部分是 define-by-run)。你喜欢一个美女,她也不是刚从娘胎里出来的,也是带有各种默认设置的。至于怎么调教,那就得求偏导。

2. 我们已知正确答案,比如图 2 和 3 里的 r,训练的时候,是从左至右计算,得出的结果为 y,r 与 y 一般来说是不一样的。那么他们之间的差距,就是图 2 和 3 里的 E。这个差距怎么算?当然,直接相减是一个办法,尤其是对于只有一个输出的情况,比如图 2; 但很多时候,其实像图 3 里的那样,那么这个差距,一般可以这样算,当然,还可以有其他的评估办法,只是函数不同而已,作用是类似的:

不得不说,理想跟现实还是有差距的,我们当然是希望差距越小越好,怎么才能让差距越来越小呢?得调整参数呗,因为输入(图像)确定的情况下,只有调整参数才能改变输出的值。怎么调整,怎么磨合?刚才我们讲到,每个参数都有一个默认值,我们就对每个参数加上一定的数值∆,然后看看结果如何?如果参数调大,差距也变大,你懂的,那就得减小∆,因为我们的目标是要让差距变小;反之亦然。所以为了把参数调整到最佳,我们需要了解误差对每个参数的变化率,这不就是求误差对于该参数的偏导数嘛。

关键是怎么求偏导。图 2 和图 3 分别给了推导的方法,其实很简单,从右至左挨个求偏导就可以。相邻层的求偏导其实很简单,因为是线性的,所以偏导数其实就是参数本身嘛,就跟求解 x₃的偏导类似。然后把各个偏导相乘就可以了。

这里有两个点:

这里有两个点:一个是激活函数,这主要是为了让整个网络具有非线性特征,因为我们前面也提到了,很多情况下,线性函数没办法对输入进行适当的分类(很多情况下识别主要是做分类),那么就要让网络学出来一个非线性函数,这里就需要激活函数,因为它本身就是非线性的,所以让整个网络也具有非线性特征。另外,激活函数也让每个节点的输出值在一个可控的范围内,这样计算也方便。

貌似这样解释还是很不通俗,其实还可以用撩妹来打比方;女生都不喜欢白开水一样的日子,因为这是线性的,生活中当然需要一些浪漫情怀了,这个激活函数嘛,我感觉类似于生活中的小浪漫,小惊喜,是不是?相处的每个阶段,需要时不时激活一下,制造点小浪漫,小惊喜,比如;一般女生见了可爱的小杯子,瓷器之类都迈不开步子,那就在她生日的时候送一个特别样式,要让她感动得想哭。前面讲到男人要幽默,这是为了让她笑;适当的时候还要让她激动得哭。一哭一笑,多整几个回合,她就离不开你了。因为你的非线性特征太强了。

当然,过犹不及,小惊喜也不是越多越好,但完全没有就成白开水了。就好比每个 layer 都可以加激活函数,当然,不见得每层都要加激活函数,但完全没有,那是不行的。

由于激活函数的存在,所以在求偏导的时候,也要把它算进去,激活函数,一般用 sigmoid,也可以用 Relu 等。激活函数的求导其实也非常简单:

求导: f'(x)=f(x)*[1-f(x)] 这个方面,有时间可以翻看一下高数,没时间,直接记住就行了。 至于 Relu,那就更简单了,就是 f(x) 当 x<0 的时候 y 等于 0,其他时候,y 等于 x。 当然,你也可以定义你自己的 Relu 函数,比如 x 大于等于 0 的时候,y 等于 0.01x,也可以。

另一个是学习系数,为什么叫学习系数?刚才我们上面讲到∆增量,到底每次增加多少合适?是不是等同于偏导数(变化率)?经验告诉我们,需要乘以一个百分比,这个就是学习系数,而且,随着训练的深入,这个系数是可以变的。

当然,还有一些很重要的基本知识,比如 SGD(随机梯度下降),mini batch 和 epoch(用于训练集的选择),限于篇幅,以后再侃吧。其实参考李宏毅的那篇文章就可以了。

这篇拙文,算是对我另一个回答的补充吧:深度学习入门必看的书和论文?有哪些必备的技能需学习? (https://www.zhihu.com/question/31785984/answer/129108774)

其实上面描述的,主要是关于怎么调整参数,属于初级阶段。上面其实也提到,在调参之前,都有默认的网络模型和参数,如何定义最初始的模型和参数?就需要进一步深入了解。 不过对于一般做工程而言,只需要在默认的网络上调参就可以了,相当于用算法; 对于学者和科学家而言,他们会发明算法,难度还是不小的。向他们致敬!

写得很辛苦,觉得好就给我点个赞吧:)

原文发布于微信公众号 - AI研习社(okweiwu)

原文发表时间:2017-09-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

【源码】机器学习算法清单!附Python和R代码

本文约6000字,建议阅读8分钟。 通过本文为大家介绍了3种机器学习算法方式以及10种机器学习算法的清单,学起来吧~ 前言 谷歌董事长施密特曾说过:虽然谷歌的无...

3373
来自专栏大数据挖掘DT机器学习

用R语言写个贝叶斯模型 预测我的妻子是否怀孕

在2015年的二月21日,我的妻子已经33天没有来月经了,她怀孕了,这真是天大的好消息! 通常月经的周期是大约一个月,如果你们夫妇打算怀孕,那么月经没来或许是一...

3339
来自专栏人工智能LeadAI

通俗易懂丨深度学习如何入门

? 作者:Jacky Yang(知乎) 关于深度学习,网上的资料很多,不过貌似大部分都不太适合初学者。 这里有几个原因: 1.深度学习确实需要一定的数学基础...

34410
来自专栏人工智能头条

Yoshua Bengio、 Leon Bottou等大神传授:深度学习的26条经验

2382
来自专栏量化投资与机器学习

【全网首发】机器学习该如何应用到量化投资系列(二)

有一些单纯搞计算机、数学或者物理的人会问,究竟怎么样应用 ML 在量化投资。他们能做些什么自己擅长的工作。虽然在很多平台或者自媒体有谈及有关的问题,但是不够全面...

2826
来自专栏智能算法

Yoshua Bengio等大神传授:26条深度学习经验

原文地址:http://www.marekrei.com/blog/26-things-i-learned-in-the-deep-learning-summe...

3796
来自专栏数据科学与人工智能

【机器学习】10 种机器学习算法的要点

前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明、更个性化的技术。 也许我...

2537
来自专栏机器学习算法工程师

深入浅出——基于密度的聚类方法

作者 祝烨 编辑 (没脸) “The observation of and the search forsimilarities an...

3718
来自专栏AI研习社

不会做特征工程的 AI 研究员不是好数据科学家!上篇 - 连续数据的处理方法

眨眼间我们就从人工特征、专家系统来到了自动特征、深度学习的人工智能新时代,众多开源测试数据集也大大降低了理论研究的门槛,直接加载数据集就可以开始模型训练或者测试...

52610
来自专栏深度学习自然语言处理

深度学习如何入门?

关于深度学习,网上的资料很多,不过貌似大部分都不太适合初学者。 这里有几个原因: 深度学习确实需要一定的数学基础。如果不用深入浅出地方法讲,有些读者就会有畏难...

3448

扫码关注云+社区

领取腾讯云代金券