7个深度神经网络可视化工具,不可错过!

TensorBoard:TensorFlow 集成可视化工具

GitHub 官方项目:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tensorboard

TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。

为了更方便 TensorFlow 程序的理解、调试与优化,Google 发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。

当 TensorBoard 设置完成后,它应该是这样子的:

输入下面的指令来启动 tensorboard:

tensorboard --logdir=/path/to/log-directory

这里的参数 logdir 指向 SummaryWriter 序列化数据的存储路径。如果 logdir 目录的子目录中包含另一次运行时的数据,那么 TensorBoard 会展示所有运行的数据。一旦 TensorBoard 开始运行,你可以通过在浏览器中输入 localhost:6006 来查看 TensorBoard。进入 TensorBoard 的界面时,你会在右上角看到导航选项卡,每一个选项卡将展现一组可视化的序列化数据集 。对于你查看的每一个选项卡,如果 TensorBoard 中没有数据与这个选项卡相关的话,则会显示一条提示信息指示你如何序列化相关数据。

TensorFlow 图表计算强大而又复杂,图表可视化在理解和调试时显得非常有帮助。

更多详细内容参考:

  • [TensorFlow 中文社区] TensorBoard: 可视化学习
  • [TensorFlow 中文社区] TensorBoard: 图表可视化
  • [极客学院] TensorBoard: 可视化学习

Netscope: 支持 Caffe 的神经网络结构在线可视化工具

官网:http://ethereon.github.io/netscope/quickstart.html GitHub 项目:https://github.com/ethereon/netscope

“A web-based tool for visualizing neural network architectures (or technically, any directed acyclic graph). It currently supports Caffe’s prototxt format.”

Netscope 是一个支持 prototxt 格式描述的神经网络结构的在线可视工具。它可以用来可视化 Caffe 结构里 prototxt 格式的网络结构,使用起来也非常简单,打开这个地址 http://ethereon.github.io/netscope/#/editor,把你的描述神经网络结构的 prototxt 文件复制到该编辑框里,按 shift+enter,就可以直接以图形方式显示网络的结构了。

比如,以 mnist 的 Lenet imagenet 的 AlexNet 网络结构为例,分别把 Caffe 中 caffe/examples/mnist/lenet_train_test.prototxt和 caffe/models/bvlc_alexnet/train_val.prototxt

文件的内容复制到左侧编译框,按 shift+enter, 立即就可以得到可视化的结构图,具体每层的参数等,如下:

Netscope 给出的几个常见 CNN 网络结构示例:

  • AlexNet | Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton
  • CaffeNet | Yangqing Jia, Evan Shelhamer, et. al.
  • Fully Convolutional Network — Three Stream | Jonathan Long, Evan Shelhamer, Trevor Darrell
  • GoogleNet | Christian Szegedy, et. al.
  • Network in Network | Min Lin, Qiang Chen, Shuicheng Yan
  • VGG 16 Layers | Karen Simonyan, Andrew Zisserman

以上网络的 prototxt 源文件见:https://github.com/ethereon/netscope/tree/gh-pages/presets 。

使用 python/draw_net.py 绘制网络模型

python/draw_net.py,这个文件,就是用来绘制网络模型的,也就是将网络模型由 prototxt 变成一张图片。

在绘制之前,需要先安装两个库

1. 安装GraphViz

  $ sudo apt-get install GraphViz

注意,这里用的是 apt-get 来安装,而不是 pip。

2. 安装 pydot

$ sudo pip install pydot

用的是 pip 来安装,而不是 apt-get。

安装好了,就可以调用脚本来绘制图片了。

draw_net.py 执行的时候带三个参数:

  • 第一个参数:网络模型的 prototxt 文件;
  • 第二个参数:保存的图片路径及名字;
  • 第二个参数:- - rankdir = x,x 有四种选项,分别是 LR, RL, TB, BT 。用来表示网络的方向,分别是从左到右,从右到左,从上到小,从下到上。默认为 LR。

例:绘制 Lenet 模型

$ sudo python python/draw_net.py examples/mnist/lenet_train_test.prototxt netImage/lenet.png --rankdir=BT

参考阅读:

  • Netscope: 支持 Caffe 的神经网络结构在线可视化工具
  • Caffe 学习系列 (18): 绘制网络模型
  • Caffe 学习系列——工具篇:神经网络模型结构可视化
  • 深度网络的设计与可视化工具

Neural Network Playground

官网:http://playground.tensorflow.org GitHub 项目:https://github.com/tensorflow/playground

Deep playground is an interactive visualization of neural networks, written in typescript using d3.js.

PlayGround 是一个图形化用于教学目的的简单神经网络在线演示、实验的平台,非常强大地可视化了神经网络的训练过程。

参考阅读:

  • [知乎] 谁能详细讲解一下 TensorFlow Playground 所展示的神经网络的概念?
  • [Blog] 结合 TensorFlow PlayGround 的简单神经网络原理解释

ConvnetJS

官网:http://cs.stanford.edu/people/karpathy/convnetjs/ GitHub 项目:https://github.com/karpathy/convnetjs

ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you’re training. No software requirements, no compilers, no installations, no GPUs, no sweat.

Some Online Demos

  • Convolutional Neural Network on MNIST digits
  • Convolutional Neural Network on CIFAR-10
  • Toy 2D data
  • Toy 1D regression
  • Training an Autoencoder on MNIST digits
  • Deep Q Learning Reinforcement Learning demo
  • Image Regression (“Painting”)
  • Comparison of SGD/Adagrad/Adadelta on MNIST

更多内容请关注官网和 GutHub 项目 README。

WEVI

官网:wevi: word embedding visual inspector GitHub 项目:https://github.com/ronxin/wevi

具体参考:wevi: Word Embedding Visual Inspector

CNNVis

文章来源:Towards Better Analysis of Deep Convolutional Neural Networks arxiv.org/abs/1604.07043

具体参见:能帮你更好理解分析深度卷积神经网络,今天要解读的是一款新型可视化工具——CNNVis,看完就能用!

摘要: 深度卷积神经网络(CNNs)在许多模式识别任务中取得了很大的性能突破, 然而高质量深度模型的发展依赖于大量的尝试,这是由于没有很好的理解深度模型是怎么工作的,在本文中,提出了一个可视化分析系统 CNNVis,帮助机器学习专家更好的理解、分析、设计深度卷积神经网络。

原文发布于微信公众号 - AI研习社(okweiwu)

原文发表时间:2017-07-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

开发 | 深度神经网络可视化工具集锦

AI 科技评论按:原文作者zhwhong,载于作者的个人博客,经授权发布。 TensorBoard:TensorFlow集成可视化工具 GitHub官方项目...

40260
来自专栏新智元

手把手教你用OpenCV和Python实现图像和视频神经风格迁移(代码)

2015年,Gatsys等人在论文A Neural Algorithm of Artistic Style中提出了最初的神经风格迁移算法。2016年,Johns...

58320
来自专栏ATYUN订阅号

深度学习图像识别项目(中):Keras和卷积神经网络(CNN)

在下篇文章中,我还会演示如何将训练好的Keras模型,通过几行代码将其部署到智能手机上。

3.1K60
来自专栏逍遥剑客的游戏开发

边缘高亮效果(三)

16420
来自专栏决胜机器学习

机器学习(十) ——使用决策树进行预测(离散特征值)

机器学习(十)——使用决策树进行预测(离散特征值) (原创内容,转载请注明来源,谢谢) 一、绘制决策树 决策树的一大优点是直观,但是前提是其以图像形式展示。如...

41160
来自专栏奇点大数据

理解LSTM一种递归神经网络(RNN)

1 递归神经网络结构 一个简单的传统神经网络结构如下图所示: ? 给他一些输入x0,x1,x2 … xt, 经过神经元作用之后得到一些对应的输出h0,h1,h2...

292100
来自专栏iOSDevLog

vid2vid 视频到视频转换vid2vid

Pytorch实现了我们的高分辨率(例如2048x1024)逼真的视频到视频转换方法。

66110
来自专栏QQ音乐前端团队专栏

前端图片主题色提取

对于需要根据用户“定制”、“生成”的图片,这样的方式就有了一个上传图片---->后端计算---->返回结果的时间,等待时间也许就比较长了。由此,我尝试着利用 c...

1.8K150
来自专栏新智元

【前沿】TensorFlow Pytorch Keras代码实现深度学习大神Hinton NIPS2017 Capsule论文

【新智元导读】10月26日,深度学习元老Hinton的NIPS2017 Capsule论文《Dynamic Routing Between Capsules》终...

43970
来自专栏IT派

值得探索的 8 个机器学习 JavaScript 框架

JavaScript开发人员倾向于寻找可用于机器学习模型训练的JavaScript框架。下面是一些机器学习算法,基于这些算法可以使用本文中列出的不同JavaSc...

15600

扫码关注云+社区

领取腾讯云代金券