【吴恩达推荐】40岁开始学习,4周编写第一个AI算法的经验谈

【新智元导读】本文是一个40多岁、完全没有编程经验的人学习机器学习的经验谈。作者把编程视为学习一门新的外语,而学会深度学习这门语言就可以和未来对话:你不需要先成为一个编程专家或数学奇才再来学习编程,你只需要愿意学习,并且能够很好地使用 Python 和 Numpy。

我不是程序员,也不是数学家。大学时上过一门必修的计算机科学课程,而我只是勉强通过——那已经是20多年前的事情。然而,现在,在我40多岁的时候,我坐在门廊上与我的新朋友 Python 和 Numpy 作战,自愿地尝试建立我的第一个神经网络。事情是怎么变成这样的?

有一天我突发奇想:我意识到AI可能是最搅乱我的孩子们的生活的一种发展。在运营一家数据分析公司7年之后,我很想深入了解AI。因此,我决定参加一门深度学习和神经网络课程,该门课的老师是前百度首席科学家、斯坦福大学教授 Andrew Ng。

在为期四周的课程中,我花了30个小时来设计、构建和调整一个非常简单的神经网络。我很快了解到,Python 和 Numpy 并不是一本关于蛇和他的兔子小伙伴的书,而是一种广泛使用的编程语言和一个提高效率的计算插件。事实证明,为了构建一个基本的神经网络,这两个角色是我唯一需要知道的。

这门课是完美的:我需要努力,但不至于毫无头绪,我每次只学习一行代码。早期的工作很艰难,经常遇到一些令人抓耳挠腮的代码失败。但到了第二周,我写了一段简短的代码,告诉算法在200张猫的图片(训练数据集)上训练自己,以找出其他30张图片(测试数据集)中是否有猫。只有200张图片,我的第一个简单的算法大概能在80%的时间得到正确的答案。

当我意识到我刚刚编写了一个机器来识别一个生物实体时,那感觉是梦幻一般的。当完整的代码没有任何错误的时候,我握拳大喊:“OH YEAH!”,令孩子们吃了一惊。坦率地说,我对自己的反应感到惊讶。我可能只是正确地识别出了一只四条腿的猫,但现在,它给我的感觉远远不止于此:

  1. 这感觉就像我第一次开枪时。大约15年前,我第一次拿手枪射击。立即地,我意识到我正手握着一个非常强大的工具,它可以用于善,也可以用于恶。是的,我可能会伤害自己,但我也可以学会控制这种武器。编写我的第一个算法也是一样。我突然意识到,一个在蒙古拥有互联网连接、拥有一些数据以及花几百美元租用亚马逊服务器的处理能力的家伙,可能会在俄罗斯建一个改变人们生活的神经网络,或一个不那么善良的家伙,可能会让身份窃取的垃圾邮件更有效。我已经能利用一行代码的力量,但这些潜力可以用来做什么完全取决于我自己。
  2. 感觉就像调谐收音机。老式的收音机上,你需要转动一个旋钮来找到想要的电台频率。想象一下,如果你有1000个旋钮,你必须同时调谐才能找到本地新闻台。这需要花多长时间?与其花几天时间摆弄所有可能的排列组合,编写一个算法就像创造出一千人的手来转动这些拨盘,直到找到合适的组合。
  3. 感觉就像学习一门外语。最近我一直在学习斯瓦希里语和汉语。我很想加入至少会说三种语言的占世界人口13%的那些人中。AI就像另一种语言,它拥有自己的词汇、语法和句法。如果我遇到不懂的问题,就像你在遇到不认识的外语词汇那样:我会用谷歌搜索它。有好几次,我都用了搜索翻译的力量解决了。随着时间的推移,我希望能变得更流利。我现在的目标是“四语”,AI是其中一种语言。
  4. 感觉就像在指导孩子们打球。AI算法的关键在于提供一个计算机构建模块,教它如何一起玩,然后将这些简单的结果组合成更复杂的迭代。这类似于指导我11岁的孩子打篮球:一旦你教会他们传球、拦截、运球和投篮的基本知识,球场上真正的创造力就将由他们开启。

学会深度学习这一门语言,你就可以和未来对话。学会说这门语言并不像你想象的那么难。我就是一个典型的例子:你不需要先成为一个编程专家或数学奇才再来学习编程。你只需要愿意学习,并且能够很好地使用 Python 和 Numpy。

原文:https://qz.com/1105537/i-just-coded-my-first-ai-algorithm-and-oh-boy-it-felt-good/

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2017-10-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏腾讯高校合作

从VR的全世界走过—SIGGRAPH Asia 2016游记2

前言 Virtual Reality的展厅为我们带来了全球VR领域的顶级科学家们的最新研究成果,其中有多种多样的产品展示:无人机、VR设备、体感游戏、人脸识别、...

36112
来自专栏大数据文摘

脑联网:大脑串联成的有机电脑

2428
来自专栏大数据文摘

学界 | 离开实验室的材料科学:AI正将新材料的发现过程提速200倍

1904
来自专栏PPV课数据科学社区

周一经典 | 如何成为一名数据科学家?

如何成为一名数据科学家? 文 | 谢科 "Data Science = statistics who uses python and lives in San ...

3665
来自专栏新智元

Atari联合创始人去世,为什么游戏对AI很重要?

992
来自专栏悦思悦读

为什么别人一点就透,我却迟迟学不会?

天明同学是这门课的一位非常用功的学生。之前,他就自己的学习经历、心得和收获写了一篇《我是这样入门“机器学习”的》。

1382
来自专栏技术翻译

11个有趣的【数据可视化】案例

数据可视化专家每天都在数据设计的世界里创造惊人的东西,数据可视化是在许多不同领域的重要工具。为了纪念所有艺术家和设计师在世界各地进行惊人的数据可视化,这里收集了...

2.2K0
来自专栏机器人网

国际机器人与自动化大会重点推介的20种创新机器人技术

最近在瑞典斯德哥尔摩召开的“国际机器人与自动化大会”(ICRA)向世人展示了该领域最新的设计和创意理念,从飞行运输、环保检测、工业制造到休闲生活娱乐,形形色色的...

3917
来自专栏AI科技评论

视频 | DeepMind出了学习模式「SAC-X」,可以让机器人探索自我

为机器人提供一个简单目标,并在完成时提供奖励。 AI 科技评论按:这里是,雷锋字幕组编译的 Two minutes paper 专栏,每周带大家用碎片时间阅览前...

3514
来自专栏悦思悦读

美国大学数据科学(Data Science)教育实践

本文作者:李琦,现任北肯塔基大学(North Kentucky University)计算机系(Computer Science)数据科学(Data Scien...

8281

扫码关注云+社区

领取腾讯云代金券