前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【压缩率3000%】上交大ICCV:精度保证下的新型深度网络压缩框架

【压缩率3000%】上交大ICCV:精度保证下的新型深度网络压缩框架

作者头像
新智元
发布2018-03-22 15:08:20
9660
发布2018-03-22 15:08:20
举报
文章被收录于专栏:新智元

【新智元导读】上海交通大学人工智能实验室的研究人员提出了一种新的方法,能够在保证网络模型精度的前提下对深度网络进行压缩。相关论文已被ICCV 2017接收,由上海交通大学人工智能实验室李泽凡博士实现,倪冰冰教授,张文军教授,杨小康教授,高文院士指导。

随着人工智能在各个领域的应用中大放异彩,深度学习已经成为街头巷尾都能听到的词汇。然而,网络越来越深,数据越来越大,训练越来越久,如何在保证准确率的情况下加速网络,甚至让网络在CPU或者移动设备上进行训练与测试,就变成了迫在眉睫的问题。

上海交通大学人工智能实验室的研究人员发表了论文《基于高阶残差量化的高精度网络加速》(Performance Guaranteed Network Acceleration via High-Order Residual Quantization),提出一种新的方法,能够在保证网络模型精度的前提下对深度网络进行压缩。实验结果,他们将网络的大小降低了约32倍,速度上有30倍的提升。虽然以往的方法在体积和速度上也曾经取得类似的效果,但本论文提出的方法在精度保证上更胜一筹。

新的压缩方法HORQ:加快网络计算的同时保证准确率

除了网络pruning,网络稀疏近似等等,网络二值化也是常见的网络加速方式。通常情况下,我们用 +1 和 -1 来代替原来的浮点数数值,使得卷积中的乘法操作变成加减操作,而如果输入和权重同时二值化,乘法操作就会变成异或操作。

这看似是一种合理的网络压缩方式,然而如果单纯的运用阈值二值化方法对网络输入进行二值化处理,那么模型最后的精度将无法得到保证。但如果不运用二值化方法对网络进行加速,那么就又无法利用二值化所带来的在计算和存储方面的优势。

这篇文章提出的HORQ(High Order Residual Quantization)方法,提出了一种针对输入的高阶残差二值量化的方法,既能够利用二值化计算来加快网络的计算,又能够保证训练所得的二值化网络模型拥有较高的准确率

图一展示了如何用HORQ方法将一个普通的卷积层进行残差量化。

图一 HORQ结构

之前的二值化方法,例如XNOR,对输入简单地采用了阈值量化的操作。这样的方法可以看成是对浮点数的一阶二值近似方法。在此之上,本文运用递归阈值量化的方法,提出了HORQ的框架。具体来讲,如图一所示,在第一次阈值量化操作后,我们可以定义并计算改阶近似对应的残差,然后对该阶残差进行新一轮的二值近似。通过对高阶残差的近似,我们可以得到对应于不同尺度下的二值feature map。将这些feature map相加,便可得到最终的输出。

实验结果

这篇文章的实验部分在MNIST和CIFAR-10数据集上进行测试,发现HORQ-net对比之前对输入简单采取一阶阈值二值化的方法有喜人的优势:

图二 MNIST实验

图三 Cifar-10实验

我们发现,对于二阶残差量化方法,该方法将网络的大小降低了约32倍,同时速度上有30倍的提升,相比XNOR-net在两个MNIST和CIFAR-10上测试准确率均有提升,并且展现出了可在CPU上进行网络训练的潜能。

图四 HORQ方法加速比性能分析

图五 HORQ方法加速比与量化阶数分析

HORQ方法对卷积层计算的的加速比跟卷积核大小,feature map数量,以及残差量化的阶数都有较大关系。这些关系体现在图四和图五中。而且,如图六所示,基于二值化的模型存储空间可以得到大幅度的降低。

结语

该论文提出的HORQ方法可以作为一个基础的二值量化的方法,用于网络的输入二值化中,能够在保证网络模型精度的前提下,利用二值量化的技术提升网络的计算速度,而且同时可以根据实际的硬件需要来调整残差阶数以适应需求。

这个方法有着很大的发展和使用前景。对于一般的深度学习网络,HORQ方法能能够很大程度上加速深度网络的计算速度。由于网络的每层输入的输入和权值都被二值化,模型的前向传播时间得到大大降低,同时存储模型所需的空间得到大大压缩,使得在资源受限的小运算平台,例如手机和笔记本上运行大规模深度网络模型成为可能。另外,高阶残差量化的方法能够使得网络精度的得到保证,使得网络不再会因为简单二值化方法而出现精度大幅下降。

该论文已经被ICCV2017接收,由上海交通大学人工智能实验室李泽凡博士实现,倪冰冰教授,张文军教授,杨小康教授,高文院士指导。

相关论文 Performance Guaranteed Network Acceleration via High-Order Residual Quantization 将在ICCV发表,详情可届时查看。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-08-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档