前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >举个卡戴珊的例子,讲讲Hinton的Capsule是怎么回事 | 教程+代码

举个卡戴珊的例子,讲讲Hinton的Capsule是怎么回事 | 教程+代码

作者头像
量子位
发布2018-03-23 16:09:41
5720
发布2018-03-23 16:09:41
举报
文章被收录于专栏:量子位
Nick Bourdakos 文 李林 若朴 编译自 HackerNoon 量子位 出品 | 公众号 QbitAI

Capsule Networks,或者说CapsNet,这个名字你应该已经听过好几次了。

这是“深度学习之父”的Geoffrey Hinton近几年一直在探索的领域,被视为突破性的新概念。最近,关于Capsule的论文终于公布了。

一篇即将发表于NIPS 2017:

Dynamic Routing Between Capsules

作者:Sara Sabour, Nicholas Frosst, Geoffrey E Hinton

https://arxiv.org/abs/1710.09829v2

另一篇是ICLR 2018正在匿名评审的:

Matrix capsules with EM routing

作者目前未知

https://openreview.net/pdf?id=HJWLfGWRb

要理解Capsule Networks,还得从卷积神经网络(CNN)的特性说起。

传统神经网络的问题

到目前为止,图像分类问题上最先进的方法是CNN。

而CNN的工作原理,是将每一层对应的特征累积起来,从寻找边缘开始,然后是形状、再识别实际的对象。

然而,在这个过程中,所有这些特征的空间关系信息丢失了

虽然可能有点过度简化了,不过我们可以把CNN看做这样一个程序:

代码语言:javascript
复制
if (2 eyes && 1 nose && 1 mouth) {
  It's a face!
}

翻译成人话就是:如果有两只眼睛、一个鼻子、一张嘴,它就是一张脸!

一般人看见这个表述,第一反应大概是挺好的啊,有道理,没毛病~

对,有道理,不过我们需要转念想一想:这个表述还是有问题的。不信?看一张略恐怖的卡戴珊姐姐照片:

确实是两只眼睛一个鼻子一张嘴吧?

但我等人类都一眼就能看出来,这张照片不对劲啊!眼睛和嘴错位了啊!人不应该长这样!识别成鬼还差不多……

可是呢,CNN会认为,眼睛和嘴的位置不管在哪,都没什么区别,会很宽容地,把这张照片归类成“人”:

除了对人类五官的位置过于宽容之外,CNN还有还有一个毛病,就是对图片的角度要求有点苛刻,它能容忍照片稍微旋转一些,但要是旋转太多,它就不认得了。

我们把卡戴珊姐姐旋转180°:

出现这个问题的原因,用行话来说是旋转的程度超出了最大池化(maxpooling)所带来的旋转不变性(invariance)的限度。这其实有办法解决,就是在训练中用上各种可能角度的图片,行话叫做data augmentation。不过,这种做法实在是耗时费力。

另外,CNN还很容易受到白盒对抗性攻击(adversarial attacks)的影响,在图片上悄悄藏一些图案,就能让CNN把它误认作别的东西。

谷歌的神经网络把海龟误认成步枪,就是这个毛病:

所以Hinton老爷子才会觉得CNN不行。(Hinton真的很严格)

Capsule Networks前来救援!

CapsNet架构

Capsule Networks就能让我们充分利用空间关系,看到更多东西。在认人脸这件事上,可以这么表示:

代码语言:javascript
复制
if (2 adjacent eyes && nose under eyes && mouth under nose) {
  It's a face!
}

翻译成人话:如果有两只相邻的眼睛、眼睛下有一个鼻子、鼻子下有一张嘴,它就是一张脸。

你应该能看出来,这样来定义,神经网络就不会把畸形版卡戴珊姐姐也认作人脸了。

这种新架构还更善于从不同角度来识别形状,它在下面这个数据集上,可以获得更高的精度。这个精心设计的数据集就是用来进行单纯的形状识别,甚至是从不同的角度识别的。Capsule Networks击败了最先进的CNN,将错误数量减少了45%。

CapsNet把第二行图片识别为第一行同类图片的能力远超CNN

此外,最近发布的论文表明,与卷积神经网络相比,Capsules对白盒对抗性攻击显示出更大的抵抗力。

训练CapsNet

重点来了:要想理解一篇论文,最好的方法是把它实现出来。

Bourdakos基于Hinton的论文,写出了一份CapsNet的TensorFlow实现

代码:https://github.com/bourdakos1/capsule-networks

接下来的内容,就是要介绍如何训练它。

下面以如何在MNIST数据集上训练模型为例。这是一个著名的手写数字的数据集,是测试机器学习算法的良好基准。

首先从克隆repo开始:

代码语言:javascript
复制
git clone https://github.com/bourdakos1/capsule-networks.git

然后安装需求。

代码语言:javascript
复制
pip install -r requirements.txt

开始训练!

代码语言:javascript
复制
python main.py

MNIST数据集有6万个训练图像。默认情况下,模型将以128的batch size训练50个epoch周期。一个epoch代表训练集的一次完整运行。由于batch size是128,所以每个epoch大约有468个batch。

注意:如果你没有GPU,训练可能需要很长的时间。

推理

一旦模型完整训练过,就可以通过以下命令来测试:

代码语言:javascript
复制
python main.py --is_training False

结论

Capsule Networks似乎很棒,但仍在婴儿期,在训练大型数据集时可能遇到一些问题,但信心还是要有的。

P.S.下面是一个很棒的视频,建议大家花时间看看。(这是Hinton在2012年的一次演讲,主题是《Does the Brain do Inverse Graphics?》,大脑做逆向图么?)

想要获得这个视频中的ppt,可以在量子位微信公众号(QbitAI)的对话界面,回复:“ipam”几个字母即可。

感谢阅读,如果有问题可以与作者联系,邮箱:bourdakos1@gmail.com。点击左下角『阅读原文』可以查看更多。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-11-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 传统神经网络的问题
  • Capsule Networks前来救援!
  • 训练CapsNet
  • 推理
  • 结论
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档