以亚马逊Alexa为代表的语音助手不能成为入口载体的3大原因

【新智元导读】 所谓“入口”,就是网络大数据汇聚的必经之地。入口历来是各大小公司的必争之地。亚马逊 Echo-Alexa 软硬合体,能够以人工智能的旗号,从智能手机的头上抢来“入口载体”的桂冠吗?作者认为,Alexa不足以形成争夺网络数据入口载体的绝对优势,语音交互尚不具备人机交互范式代际更替的颠覆性力量,语义落地对Alexa的成功具有更加决定性的贡献,不以获取用户数据为目的的端设备都是耍流氓。本文最后讨论了什么样的玩家能够最终胜出。

“入口载体”之争

最近,亚马逊旗下的智能音箱产品 Echo 和出没于 Echo 中的语音助手 Alexa 掀起了一股旋风。不仅智能家居业在关注、人工智能创业公司在关注,IT巨头们也在关注。那么,Alexa 到底有什么独到之处呢?

有人说,Alexa 在“远场”语音识别方面有绝活,解决了“鸡尾酒会”难题:设想在一个人声嘈杂的鸡尾酒会上,一个人对你说话,声音虽不很大,但你可以很精准地捕捉对方的话语,而忽略周边其他人的话语。这手绝活,据说其他语音厂商没有,中国连语音处理最拿手的科大讯飞也没有。

有人说,Alexa 背后的“技能”极其丰富,你既可以点播很多节目,也可以购买很多商品和服务;既可以操控家里的各款家电设备,也可以打听各类消息。总而言之,这是一个背靠着强大服务资源(有些在端,更多在云)的语音助手,绝非可与苹果的 Siri 或者微软的小冰同日而语。

端方面的出色性能,加上端+云方面的庞大资源,构成了 Alexa 预期中的超强粘性,形成了传说中巨大的入口价值。这也似乎是Alexa在美国市场取得不俗业绩的一个说得通的解释。有相当一部分人意识到,这可能是一个巨大的商机,是一个现在不动手说不定将来会追悔莫及的局。尽管在美国以外的其他市场上,Alexa的业绩并不像在美国市场那样抢眼,但是这股Alexa旋风,还是刮遍了全球,引起了同业人士的高度紧张和一轮智能音箱模仿秀。

Alexa 动了谁的奶酪?抢了谁的饭碗?怎样评价 Alexa 的入口价值?怎样看待入口之争的昨天、今天、明天?

我们不妨来回顾一下“入口”的今昔变迁。所谓“入口”,就是网络大数据汇聚的必经之地。从模式上看,我们曾经经历过“门户网站”模式、“搜索引擎”模式和“社交网络”模式,目前新一代的入口正在朝着“人工智能”模式迁移。从载体上看,“门户网站”和“搜索引擎”模式的载体基本上是PC,“社交网络”模式的载体基本上是以智能手机为主的端设备。“人工智能”模式有可能的改变载体吗?换句话说,Echo-Alexa 软硬合体,能够以人工智能的旗号,从智能手机的头上抢来“入口载体”的桂冠吗?

本人认为,这是不可能的。原因有三。

第一,场景不对。哪怕你抗噪本事再强大,特定人跟踪的本事再大,只要安放地点固定,就是对今天已经如此发达的移动场景的一种巨大的倒退。试想,家庭场景的最大特点就是人多,人一多,就形成了个小社会,就有结构。谁有权发出语音指令?谁有权否定和撤销别人已经发出的语音指令?最有权的人不在家或者长期沉默,听谁的?一个家庭成员如果就是要发出一个不想让其他家庭成员知道的私密语音指令怎么办?个人感觉,语音指令说到底还是个体行为大于家庭行为,私密需求大于开放需求。因此,家庭语音入口很可能是个伪命题。能解析的语音指令越多,以家庭场景作为必要条件的语音指令所占比重就越少。

第二,“连横”面临“合纵”的阻力。退一步说,就算承认“智能家居中控”是个必争的入口,智能音箱也面临其他端设备的挑战。我们把聚集不同厂家家居设备数据流向的倾向称为“连横”,把聚集同一厂家家居设备数据流向的倾向称为“合纵”。可以看出,“连横”的努力是对“合纵”的生死挑战,比如海尔这样在家庭里可能有多台智能家居设备的厂商,如非迫不得已,自家的数据为什么要通过他人的设备流走呢?

第三,同是“连横”的其他端设备的竞争。可以列举的有:家用机器人、家庭网关/智能路由器、电视机、智能挂件等。这些设备中,家用机器人的优势是地点无需固定,家庭网关的优势是永远开机,电视机的优势是大屏、智能挂件(如画框、雕塑、钟表、体重计等)的优势是不占地方。个人感觉,智能音箱面对这些“连横”的竞争者并没有什么胜算。

综上所述,Echo-Alexa 的成功,具有很强的叠加特点。它本质上是亚马逊商业体系的成功,而不是智能家居设备或者语音助手技术的成功。忽略商业体系的作用,高估家庭入口的价值,单纯东施效颦地仿制或者跟随智能音箱,是没有出路的。个人觉得,智能手机作为移动互联时代的入口载体,其地位仍然是不可撼动的。

语音交互时代真的到来了吗?

IT巨头们关注 Alexa 还有一个重要的理由,就是由 Alexa 所代表的语音交互,或许开启了人机交互的一种新型范式的兴起。当年,无论是点击模式的兴起还是触摸模式的兴起,都引发了人机交互范式的革命性变化,直接决定了IT巨头的兴亡。点击模式决定了 wintel 的崛起,触摸模式决定了 wintel 被苹果的颠覆,这些我们都以亲身经历见证过了。如果语音交互真的代表了下一代人机交互范式,那么 Alexa 就有了人机交互范式的代际转换方面的象征意义,不由得巨头们不重视。

然而个人认为,单纯的语音交互还构不成“代际转换”的分量。理由有三:

第一,语音本身并不构成完整的人机交互场景。人的信息摄入,百分之八十以上是视觉信息,在说话的时候,经常要以视觉信息为基本语境,通过使用指示代词来完成。比如指着屏幕上一堆书当中的一本说“我要买这本”。就是说,语音所需要的语境,有相当部分来自视觉的呈现,来自针对和配套可视化对象的手势、触摸或眼动操作。这至少说明,我们需要multi-modal人机交互,而不是用语音来取代其他人机交互手段。

第二,目前语音输入还过不了方言关。中国是一个方言大国,不仅方言众多,而且方言区的人学说普通话也都带有方言区的痕迹。“胡建人”被黑只是这种现象的一个夸张的缩影。要想惠及占全国总人口一半以上的方言区,语音技术还需要经历进一步的发展和成熟阶段。

第三,目前语音输入还很难解决“转义”问题。所谓转义问题就是当语音指令的对象是语音输入本身的时候,系统如何做出区分的问题。人在发现前一句说的有问题需要纠正的时候,有可能需要用后一句话纠正前一句话,这后一句话不是正式的语音输入的一部分;但也有可能后一句话并不是转义,而是与前一句话并列的一句话,这时它就是语音输入的一部分。这种“转义”语音内容的识别,需要比较高级的语义分析技术,目前还不那么成熟。

所以,以语音输入目前的水平,谈论语音输入的“代际转换”或许还为时尚早。甚至,语音可能只是一个叠加因素,而并不是颠覆因素。说未来会进入multi-modal输入的时代,说不定更加靠谱一点。

语义落地是粘性之本

语义这个字眼,似乎被某些人玩得很滥,好像会分词了就摸到语义了,其实不然。语义的水很深。

从学术上说,语义分成两个部分,一个叫“符号根基”,讲的是语言符号(能指)与现实世界(也包括概念世界)中的对象(所指)的指称关系;另一个叫“角色指派”,讲的是语言符号所指的现实或概念对象之间的结构性关系。符号根基的英文是“symbol grounding”,其中的 grounding 就有落地的意思。所以,我们说的语义落地,无论学术上还是直观上,都是一致的。Siri 在通信录、位置、天气等领域首开了在移动互联设备上实现语义落地的先河,这几年语义落地的范围越来越广。

前面说了,“端方面的出色性能,加上端+云方面的庞大资源,构成了 Alexa 预期中的超强粘性”。我们在这一节里面要进一步探讨:“端的性能”和“端+云的资源”这两者中,谁是产生 Alexa 粘性的更根本原因?笔者无意玩什么“都重要,谁也离不开谁”之类的辩证平衡术,那是便宜好人,说起来冠冕堂皇,做起来毫无方向。坦率地说,如果归因错误,那么就会产生投入方向的错误。而投入方向的错误,将使模仿者东施效颦,输得体无完肤。

作者认为,“端的性能”是硬件对场景的适应性。这充其量是“好的现场体验”。但没有实质内容的“好的现场体验”会很快沦为玩具,而且是不那么高档的玩具。没有“有实质意义的服务”就不可能产生持久的粘性,而没有持久的粘性就充当不了持久的数据汇集入口。然而,“有实质意义的服务”,一定源自语义落地,即语音指令与实际服务资源的对接,也就是 Alexa 的所谓“技能”。底下所说的语义落地,都是指的语音指令与无限可能的实际服务资源对接这种落地。

语义落地需要一个强大的、开放领域的NLP引擎。服务资源千千万万,不可能局限在一个或少数领域。一个只能面对封闭领域的NLP引擎,无法胜任这样的任务。能够对接开放领域,说明这个引擎一定在语义分析上有非同寻常的功力,一定在语义知识的表示和处理方面走在了正确的道路上。在这方面,英语做得好,不一定汉语做得好。还不了解汉语在开放领域的NLP引擎是一个什么样难度的人,不可能做出规模化的语义落地效果。这方面的技术壁垒可以在做同一个事情的公司间拉开有如天壤之别的巨大差距。

语义落地需要对服务资源端的接口做出工程化的适配。这同样是一个非常艰巨的任务,而且是拼资源、拼效率、拼管理的任务。小微规模的初创公司不可能有这样的资源整合能力和工程组织能力,这一定是大公司的强项。有人说,我由小到大行不行?我说,不行,时间不等人。在语义落地领域,如果不能在短时间内爆发,等着你的就是灭亡。

语义落地还需要对人机对话场景本身的掌控能力。这涉及语境感知、话题切换、情感分析、语言风格选择、个性塑造等多项技术,不一而足。语音助理不见得都是越“贫”越“萌”越好,比如适度的渊博、犀利甚至粗鲁,也都可以是卖点。

所以,我们强调语义落地对 Alexa 用户粘性的决定性作用,强调庞大服务资源对于 Alexa 成功故事的决定性贡献。在中国,没有与亚马逊规模相当、服务资源体量相当的超大型互联网企业出手,没有对面向汉语的开放领域NLP引擎开发重量级团队的出手,单凭语音技术是不可能产生这样的用户粘性的。

谁会胜出?

这年头,一切不以获取用户数据为目的的端设备都是耍流氓。智能手机独领风骚多年了,各类智能家居连横合纵也斗了有几年了。Alexa 的横空出世,给了业界很多刺激和启示,但地盘属谁,并没有盖棺论定。大家还有机会。但是就端云结合、入口和入口载体结合形成数据闭环这件事,方向性、趋势性的东西不可不查,否则机会就不是你的。

什么是方向性、趋势性的东西呢?听我道来。

第一,人工智能一定是下一代的入口模式。也就是说,各种对服务的需求,必将最终通过人工智能的多通道输入分析能力和人机互动优势,从端汇集到云;各种服务资源,必将最终借助人工智能的知识处理与认知决策能力,从云对接到端。你不布局人工智能,未来入口肯定不是你的。

第二,智能手机在相当长一段时间内,仍然是入口载体事实上的“盟主”,地位不可撼动。人走到哪里,通信节点和数字身份就跟到哪里,对现场的感知能力和作为服务代言者的app就跟到哪里。在入口载体所需要的个人性、私密性和泛在性这几个最关键的维度上,还没有哪一个其他端设备能够与智能手机相匹敌。

第三,端设备的通信功能和服务对接功能将逐步分离。随着可对接的服务越来越多样化,用一个端设备“包打天下”已不可能,但每个端设备均自带通信功能亦不可取。Apple watch 和 iPhone 之间的关系是耐人寻味的:iPhone 作为通信枢纽和客户端信息处理枢纽,Apple watch 作为专项信息采集和有限信息展示的附属设备,二者之间通过近场通信联系起来。当然,二者都是苹果自家人,数据流处在统一掌控之下。一家掌控,分离总是有限的、紧耦合的。但是,做得初一,就做得十五,今后各种分离将层出不穷,混战也将随之高潮迭起。今天是 Alexa 刮旋风,明天兴许就是谁下暴雨。如果手机厂商格局再大一点,在区块链的帮助下,在数据的采集方面对各种附属端设备的贡献进行客观的记录,据此在数据和收益的分享方面做出与各自贡献对等的合理安排,说不定某种松耦合形式的分离就会生米做成熟饭,端的生态到那时定会别样红火。可以设想,在一个陌生的地方,你从怀里掏出一张软软的薄薄的可折叠的电子地图,展开以后像一张真的地图那么大,却又像手机地图一样方便地触摸操作甚至可以结合语音操作,把它关联到你的手机上。当然,这张图也可以没有实物只有投影。而你的手机只管通信,所有的操控和展现都在这张图上完成,根本不需要掏出手机。这样的手机也许从头至尾就根本无需拿在“手”里,甚至可以穿在脚上,逐渐演化成为“脚机”……

Alexa旋风带给你的机会和启发是什么,想好了吗?

本文获作者白硕老师授权转载,特此感谢!原文链接:

http://mp.weixin.qq.com/s/SkrxNQCXGn7almJ34gG-bA

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2017-03-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人称T客

我和一个机器做了爱,也许这就是未来

编者按:当看到这个标题我想会有很多人因为好奇阅读这篇文章,之所以选择本文,只是惊叹技术的力量和发展的超速度,在我们还没有心理准备的时候他就来到了我们身边,特别...

2737
来自专栏二进制文集

程序员生存定律

在CSDN上偶然间看到这本李智勇前辈《程序员生存定律》,用了4天时间认真读完了。书中详细介绍了关于程序员的各种事情,并引经据典表达自己的看法。

1674
来自专栏互联网技术栈

软件架构师的12项修炼[1]——关系技能修炼(1)——文雅、沟通、协商

如果我准备去见一些了解你的人,例如你的邻居、同事、家人等,他们会怎样评价你呢? ❑ 他们会说你工作努力吗? ❑ 他们会说你正直诚实吗? ❑ 他们会说你举止...

782
来自专栏数据猿

投稿|DataEye& S+:2016年8月国内手游新品洞察报告

<数据猿导读> 游戏行业是一个非常多元化的行业,也是一个竞争非常激烈的行业,几乎每个月都有上千款的新游上线,过去的8月份游戏市场又发生了什么变化呢?看看Data...

3376
来自专栏量子位

科学家正让AI自己做实验,想要机器摆脱人类的直觉

李杉 编译自 Science 量子位 报道 | 公众号 QbitAI ? 如果说这是未来的生物实验室,它似乎与现在的实验室没有多大差别。 里面有身穿白大褂的科学...

4184
来自专栏Java程序员的架构之路

“面霸” 程序员的面试套路,这样拿到offer的几率提高60%

“你的优势是什么?”多年前我觉得这个问题很无聊,现在我经常这么问面试者,因为我真的想知道他的优势是什么,能给公司带来什么。最终能和面试官聊的开心愉快投缘的叫面霸...

1141
来自专栏大数据挖掘DT机器学习

Mango中国区数据总监:如何一步步走近数据科学

作者简介 李舰先生现任堡力山(PMI)集团副总,曾任Mango Solutions 中国区数据总监。 专注于数据科学在行业里的应用。擅长R语言的工程开发与...

3269
来自专栏VRPinea

异地买房怎么破?要不试试VR样板房

34410
来自专栏AI科技评论

学界 | 这2亿人民币或将奠定中国机器人理论基础

2018 年 4 月 26-27 日,首届国家自然科学基金重大研究计划「共融机器人基础理论与关键技术研究」学术交流会在中国北方车辆研究所举行,有 200 多名国...

1373
来自专栏新智元

AI不再需要“程序猿”,未来数据比代码重要

钛媒体注:过去,程序员就像是上帝,制定计算机系统运行的律法。随着机器学习的兴起,计算机正在脱离人们的控制。工程师们永远也无法确切搞清楚计算机是如何通过机器学习...

3497

扫码关注云+社区