专栏首页量子位EMNLP最佳论文公布,“让发明自己语言的AI说人话”上榜

EMNLP最佳论文公布,“让发明自己语言的AI说人话”上榜

李林 编译整理 量子位 报道 | 公众号 QbitAI

自然语言处理领域的学术会议EMNLP今天评出了四篇最佳论文:最佳长论文两篇、最佳短论文和最佳资源论文。

EMNLP的全称是Conference on Empirical Methods in Natural Language Processing,自然语言处理中的经验方法会议,由国际语言学会(ACL)的SIGDAT小组主办,今年9月7-11日将在丹麦哥本哈根举行。

下面是本届EMNLP评出的几篇最佳XX论文。量子位决定先说最佳短论文,因为它比较好玩:

最佳短论文

Natural Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog

PDF:https://arxiv.org/pdf/1706.08502.pdf

作者:Satwik Kottur, José M.F. Moura, Stefan Lee, Dhruv Batra (来自卡耐基梅隆大学、弗吉尼亚理工学院、乔治亚理工和Facebook AI研究院)

你可能注意到了这篇论文的最后一位作者:Facebook研究员Dhruv Batra。

前段时间被炒得沸沸扬扬的“AI发明了自己的语言”事件,最初起源于Facebook一项训练人工智能agent谈判的研究,Batra正是参与者之一,也是后来忍无可忍出来怼媒体“骗流量、不负责任”的那位。

本论文的几位作者虽然来自不同机构,但之前就在这个领域有合作,共同参与了一篇题为Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning的论文,这篇论文表明,两个AI可以通过讨论和分配颜色和形状值来发明自己的通信方式。

今天获奖的这篇,再次阐述了AI自己发明语言是非常正常的事情,但是,AI自己发明的通信方式通常都“不是人话”,论文还探索了能如何限制AI的通信规则,哄骗它们“说人话”。

几位作者在论文中以Task & Talk推理游戏为测试平台,来让两个agent沟通。

Task & Talk游戏是这样的:有一个虚拟的世界,其中的物体有4种可能的形状、4种可能的颜色、以及4种可能的样式。负责回答问题的A-BOT拿到一个物体,然后Q-BOT的任务是通过向A-BOT提问来搞清楚物体的一对属性。

实验产生了一系列“负面”的结果之后,最终得到了一个“正面”结果。这表明,大多数agent发明的语言(对它们自己来说)都是有效的,能达到获取任务奖励等目的,但它们显然不能被人所理解。他们在论文中写道,“实际上,我们发现自然语言并不会‘自然地’出现。”

在这篇论文中,作者也讨论了如何通过在两个agent的沟通方式上增加限制条件,来“哄骗”它们,让他们发明的语言越来越接近人类,能被人所理解。

最佳长论文

1

Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints

PDF:https://arxiv.org/pdf/1707.09457.pdf

作者:Jieyu Zhao、Tianlu Wang、Mark Yatskar、Vicente Ordonez、Kai-Wei Chang (来自弗吉尼亚大学和华盛顿大学)

这篇论文提出了一种方法,要通过语料库级的限制来减轻性别偏见在机器学习模型训练过程中的扩大。

在多标签物体识别、视觉语义角色标注等图像识别任务,都涉及到自然语言。在研究这类问题时,研究者们通常会使用结构化的预测模型和从网上搜集图片数据,这些数据也带来了一些社会偏见。

研究发现,这些任务的数据集就显示出了巨大的性别偏见,而用这些数据集训练出来的模型,会将已有的偏见放大。

比如说做饭这件事。虽然标题叫men also like shopping,但文章中最主要的例子是“cooking”。

在训练集中,做饭这个行为涉及女性的概率比男性要高33%,而用这样的数据集训练出来的模型,会放大这种偏见,在测试时,男女之间的差异被扩大到了68%。

于是,论文作者提出了用语料库级的限制来校准预测模型,并为集合推理(collective inference)设计了一种基于拉格朗日松弛的算法。使用这种方法之后,模型的识别性能几乎没有损失,但在多标签分类任务和视觉语义角色标注任务中表现出的偏见分别降低了47.5%和40.5%。

量子位想提议另一种途径,从根本上解决这个问题:男同学们多做饭,多拍照,发到网上?

2

Depression and Self-Harm Risk Assessment in Online Forums

论文尚未公开

作者:Andrew Yates、Arman Cohan、Nazli Goharian (来自马克思普朗克信息研究所和乔治城大学)

我们目前还没有看到全文,从标题来看,这篇论文是要通过线上论坛中的内容,来评估用户的抑郁和自残风险。

最佳资源论文

Crowdsourcing a Benchmark of Concept Maps

PDF:https://arxiv.org/pdf/1704.04452

作者:Tobias Falke、Iryna Gurevych (来自德国达姆施塔特工业大学)

概念地图可以用来简洁地展示重要信息,将大型文本集合结构化。作者研究了多文档摘要的一种变体,能以概念地图的形式生成简介,但发现找不到用来评估任务效果的数据集。

于是,他们就创建了一个。

作者用众包方法创建了一个新的概念地图语料库,总结了网上教育主题的异构文件集合,同时还发布了一组基准系统,还提出了一套测试方案,用来进一步研究摘要的这种变体。

本文分享自微信公众号 - 量子位(QbitAI),作者:专注报道AI

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-08-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 凭“颜值”拒稿,误判率仅0.4%?这篇计算机视觉论文让AI学界炸了锅

    不少人哈哈哈哈怀疑作者在搞笑,当然也有很多人严肃读论文,辩论数据、结论的不合理之处。甚至有人说,研究揭示了论文评审中本就存在的人类偏见。

    量子位
  • 如何高效读论文?剑桥CS教授亲授“三遍论”:论文最多读三遍,有的放矢,步步深入

    一方面,把握最前沿的研究动态,激发自身研究灵感。另一方面,不做好文献调研,自己的绝妙想法变成了重复造轮子,这种体验可不太妙。

    量子位
  • 阿里达摩院员工业余打造“论文知识图谱”工具:极速搜索,完全可视化

    最近,Reddit上的一位网友便分享了这样一款论文可视化工具—— Connected Papers,8小时就收获260赞。

    量子位
  • CV 届的金鸡百花奖:盘点我心中的 CVPR 2018 创意 TOP10

    2018 计算机视觉与模式识别会议 (CVPR) 上周在美国盐湖城举行,它是世界计算机视觉领域的顶级会议。今年,CVPR 收到了主要会议论文投稿 3300 份,...

    AI研习社
  • 这 7 篇论文影响巨大,却并不属于任何顶会!

    最近一阵子,NeurIPS 2019 放榜了、ICLR 2020 截稿了,为论文没中而闷闷不乐、为投稿(或者改稿重投)而郁闷头大的同学肯定不少。不过,在乎真正的...

    AI科技评论
  • CVPR 2018,盘点我心中的创意 TOP10

    2018 计算机视觉与模式识别会议 (CVPR) 上周在美国盐湖城举行,它是世界计算机视觉领域的顶级会议。今年,CVPR 收到了主要会议论文投稿 3300 份,...

    昱良
  • 华人学生斩获最佳论文、最佳Demo论文,ACL 2020获奖论文全部揭晓!

    刚刚,ACL 2020颁布了论文方面的奖项,共有1篇最佳论文,2篇最佳论文提名,1篇最佳主题论文,1篇最佳主题论文提名,1篇最佳demo论文,2篇最佳demo论...

    新智元
  • 400多篇论文被曝造假,集中在中国山东,数十家医院涉事,“论文作坊”真面初现?

    400篇医学论文,实验图片高度相似,这是医学界近年来被爆出的最大规模学术造假事件,而这些论文集中在中国山东地区。

    大数据文摘
  • NeurIPS 2019 获奖论文出炉,微软华人学者Lin Xiao 获经典论文奖

    作为最久负盛名的机器学习顶会之一,今年 NeurIPS 2019 在召开之前就消息不断:在今年论文审稿期间,NeurIPS 2019 程序委员会主席专门发布声明...

    AI科技评论
  • 张翼英:一点论文写作心得

    【导读】论文是硕士博士必修之关。我们转载一篇来自张翼英老师的论文心得文章! 本文来自张翼英科学网博客。 链接地址:http://blog.sciencenet....

    WZEARW

扫码关注云+社区

领取腾讯云代金券