玩过TensorFlow自带的的可视化工具么?(附源码)

TensorBoard

如何更直观的观察数据在神经网络中的变化,或是已经构建的神经网络的结构。上一篇文章说到,可以使用 matplotlib 第三方可视化,来进行一定程度上的可视化。然而Tensorflow也自带了可视化模块Tensorboard,并且能更直观的看见整个神经网络的结构。

上面的结构图甚至可以展开,变成:

使用

结构图:

with tensorflow .name_scope(layer_name):

直接使用以上代码生成一个带可展开符号的一个域,并且支持嵌套操作:

with tf.name_scope(layer_name): with tf.name_scope('weights'):

节点一般是变量或常量,需要加一个“name=‘’”参数,才会展示和命名,如:

with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size,out_size]))

结构图符号及意义:

变量:

变量则可使用Tensorflow.histogram_summary()方法:

tf.histogram_summary(layer_name+"/weights",Weights) #name命名,Weights赋值

常量:

常量则可使用Tensorflow.scalar_summary()方法:

tf.scalar_summary('loss',loss) #命名和赋值

展示:

最后需要整合和存储SummaryWriter:

#合并到Summary中 merged = tf.merge_all_summaries() #选定可视化存储目录 writer = tf.train.SummaryWriter("/目录",sess.graph)

merged也是需要run的,因此还需要:

result = sess.run(merged) #merged也是需要run的 writer.add_summary(result,i)

执行:

运行后,会在相应的目录里生成一个文件,执行:

tensorboard --logdir="/目录"

会给出一段网址:

浏览器中打开这个网址即可,因为有兼容问题,firefox并不能很好的兼容,建议使用Chrome。

常量在Event中,结构图在Graphs中,变量在最后两个Tag中。

附项目代码:

具体项目承接上一篇文章(http://blog.csdn.net/jerry81333/article/details/52979206):

import tensorflow as tf import numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): #activation_function=None线性函数 layer_name="layer%s" % n_layer with tf.name_scope(layer_name): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size,out_size])) #Weight中都是随机变量 tf.histogram_summary(layer_name+"/weights",Weights) #可视化观看变量 with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1,out_size])+0.1) #biases推荐初始值不为0 tf.histogram_summary(layer_name+"/biases",biases) #可视化观看变量 with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs,Weights)+biases #inputs*Weight+biases tf.histogram_summary(layer_name+"/Wx_plus_b",Wx_plus_b) #可视化观看变量 if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) tf.histogram_summary(layer_name+"/outputs",outputs) #可视化观看变量 return outputs #创建数据x_data,y_data x_data = np.linspace(-1,1,300)[:,np.newaxis] #[-1,1]区间,300个单位,np.newaxis增加维度 noise = np.random.normal(0,0.05,x_data.shape) #噪点 y_data = np.square(x_data)-0.5+noise with tf.name_scope('inputs'): #结构化 xs = tf.placeholder(tf.float32,[None,1],name='x_input') ys = tf.placeholder(tf.float32,[None,1],name='y_input') #三层神经,输入层(1个神经元),隐藏层(10神经元),输出层(1个神经元) l1 = add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu) #隐藏层 prediction = add_layer(l1,10,1,n_layer=2,activation_function=None) #输出层 #predition值与y_data差别 with tf.name_scope('loss'): loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1])) #square()平方,sum()求和,mean()平均值 tf.scalar_summary('loss',loss) #可视化观看常量 with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #0.1学习效率,minimize(loss)减小loss误差 init = tf.initialize_all_variables() sess = tf.Session() #合并到Summary中 merged = tf.merge_all_summaries() #选定可视化存储目录 writer = tf.train.SummaryWriter("Desktop/",sess.graph) sess.run(init) #先执行init #训练1k次 for i in range(1000): sess.run(train_step,feed_dict={xs:x_data,ys:y_data}) if i%50==0: result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #merged也是需要run的 writer.add_summary(result,i) #result是summary类型的,需要放入writer中,i步数(x轴)

原文发布于微信公众号 - AI研习社(okweiwu)

原文发表时间:2017-04-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PaddlePaddle

【序列到序列学习】带外部记忆机制的神经机器翻译

生成古诗词 序列到序列学习实现两个甚至是多个不定长模型之间的映射,有着广泛的应用,包括:机器翻译、智能对话与问答、广告创意语料生成、自动编码(如金融画像编码)...

3414
来自专栏技术墨客

TensorFlow入门 原

本文将初步向码农和程序媛们介绍如何使用TensorFlow进行编程。在阅读之前请先 安装TensorFlow,此外为了能够更好的理解本文的内容,阅读之前需要了解...

1152
来自专栏TensorFlow从0到N

TensorFlow从0到1 - 12 - TensorFlow构建3层NN玩转MNIST

上一篇 11 74行Python实现手写体数字识别展示了74行Python代码完成MNIST手写体数字识别,识别率轻松达到95%。这算不上一个好成绩,不过我并...

5175
来自专栏TensorFlow从0到N

TensorFlow从1到2 - 5 - 非专家莫入!TensorFlow实现CNN

当看到本篇时,根据TensorFlow官方标准《Deep MNIST for Experts》,你已经达到Expert Level,要恭喜了。 且不说是否夸大...

1.6K9
来自专栏深度学习入门与实践

【深度学习系列】PaddlePaddle之数据预处理

  上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如...

2658
来自专栏机器之心

教程 | TensorFlow从基础到实战:一步步教你创建交通标志分类神经网络

选自DataCamp 作者:Karlijn Willems 机器之心编译 参与:Panda TensorFlow 已经成为了现在最流行的深度学习框架,相信很多对...

5386
来自专栏杨熹的专栏

TensorFlow 入门

---- CS224d-Day 2: 在 Day 1 里,先了解了一下 NLP 和 DP 的主要概念,对它们有了一个大体的印象,用向量去表示研究对象,用神经网络...

6774
来自专栏大学生计算机视觉学习DeepLearning

手指静脉细化算法过程原理解析 以及python实现细化算法

1874
来自专栏人工智能LeadAI

TensorFlow和Keras解决大数据量内存溢出问题

以前做的练手小项目导致新手产生一个惯性思维——读取训练集图片的时候把所有图读到内存中,然后分批训练。

4554
来自专栏人工智能LeadAI

人脸识别 | 卷积深度置信网络工具箱的使用

本文主要以ORL_64x64人脸数据库识别为例,介绍如何使用基于matlab的CDBN工具箱。至于卷积深度置信网络(CDBN,Convolutional Dee...

4775

扫码关注云+社区

领取腾讯云代金券