Facebook 开源 FAISS;MIT 开发机器学习数据合成系统 SDV | 开发者头条

  • 更高效的聚类、相似性搜索算法库,Facebook 开源 FAISS
  • MIT 黑科技,合成数据也能用于机器学习
  • 机器学习算法成功预测人造地震 每日推荐阅读
  • ViZDoom 使用教程:训练 AI 来玩《毁灭战士》

█ Facebook 开源 FAISS

雷锋网消息,FAIR(Facebook 人工智能实验室)上周发表了一篇论文,提出一项针对聚类和相似性搜索的新算法设计。新架构比此前最先进的算法更快更高效,并使用 GPU 来获得更高的内存带宽和计算吞吐量。

基于此项研究,FAIR 近日在 Github 开源了一个名为 FAISS 的库,相关文档已陆续完成上传,并于昨日更新了安装文件。能进行聚类和相似性搜索的算法已有不少,FAISS 对它们进行了优化,以便更高效地在 GPU 上运行。FAISS 整合的部分算法有:

  • Fast K-Nearest Neighbour
  • QuickSelect
  • Warpselect
  • K-Means clustering

FAIR 表示,FAISS 有五大特性:

  • 使用 C++ 编写,有完整的 Python/numpy 封装。
  • 支持单个、多 GPU。
  • 优异的可扩展性,通常情况下能支持最多 100 个维度。
  • 基于 BLAS 和 CUDA。
  • 比当前最先进的库速度提高 8.5 倍。

详情:http://www.leiphone.com/news/201703/lzEITGcs5Miuh8k5.html

GitHub:http://www.leiphone.com/news/201703/lzEITGcs5Miuh8k5.html

论文:https://arxiv.org/abs/1702.08734

(点击文末“阅读原文”跳转,获取超链接)

█ MIT 黑科技,合成数据也能用于机器学习

IEEE 数据科学大会上出现了一篇重磅论文。该论文的作者是 MIT LIDS(Laboratory for Information and Decision Systems) 实验室的首席科学家 Kalyan Veeramachaneni。他提出了一项新技术:通过机器学习算法基于真实数据生成合成数据,将后者应用于模型训练,却能产生和前者相当的效果。

你或许要问,这个技术有什么价值?

很多领域,比如医疗和金融,普通用户的隐私、敏感信息要么难以合法获取、要么代价极大(雷锋网注:AI 公司从医院购买患者扫描图像普遍需要一笔巨资,几乎没有企业负担得起)。而合成数据避免了隐私泄露问题,但又具备真实数据的价值;因此可用来开发、测试算法模型。

Kalyan Veeramachaneni 发明的这个机器学习系统名为 Synthetic Data Vault (SDV),能基于真实数据创建机器学习算法模型,来自动生成人造、合成数据。这套系统基于名为 "recursive conditional parameter aggregation" 的算法。

详情:http://news.mit.edu/2017/artificial-data-give-same-results-as-real-data-0303

论文:http://dai.lids.mit.edu/SDV.pdf

█ 机器学习算法成功预测人造地震

众所周知,地震预测一直是终极科学难题之一,至今尚无可靠的方法。相当多地质专家认为这根本不可能实现。雷锋网消息,美国 Los Alamos 国家实验室的两名研究人员,利用机器学习技术实现了对实验室环境的人工地震预测。这再次点燃了希望。

他们训练了一个机器学习算法,对人造地震发生前材料受压释放的声波成功进行了识别。考虑到地震预测课题的难度,研究团队对该技术在真实地震条件下的预测效果表示谨慎。但这项研究指出了一个新方向。

该突破在地质学界造成了相当大的震动。可以预料,将会有一大批科研人员着手研究如何将机器学习应用于对地震前兆信号的识别。

详情:https://www.technologyreview.com/s/603785/machine-learning-algorithm-predicts-laboratory-earthquakes/

每日推荐阅读

ViZDoom 使用教程:训练 AI 来玩《毁灭战士》

ViZDoom 是一个可与 Tensorflow、Theano 等框架结合的强化学习库,同时是一个基于游戏《毁灭战士》(“Doom”)的 AI 研究平台,为机器视觉学习和深度强化学习而设计。技术人员可用该工具开发仅通过 screen buffer 信息来玩《毁灭战士》的 AI 智能体。

英国数据咨询师 Mark Litwintschik,近日发表了一篇使用 ViZDoom 的上手教程。该教程基于 Tensorflow,感兴趣的可以玩一玩。

文章地址:http://tech.marksblogg.com/tensorflow-vizdoom-bots.html

ViZDoom 地址:http://vizdoom.cs.put.edu.pl/

原文发布于微信公众号 - AI研习社(okweiwu)

原文发表时间:2017-03-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与Python学习

K-Means算法的10个有趣用例

源 | AI Zone K-means算法具有悠久的历史,并且也是最常用的聚类算法之一。K-means算法实施起来非常简单,因此,它非常适用于机器学习新手爱好者...

34360
来自专栏量子位

这个高仿真框架AI2-THOR,想让让强化学习快速走进现实世界

夏乙 编译整理 量子位 出品 | 公众号 QbitAI AlphaGo的节节胜利,向人们展示了强化学习的强大能力。但要是想让这种方法作用于现实世界,指挥机器人完...

28130
来自专栏量子位

AI进军B-Box界:输入20秒任意声音,还你一段定制的B-Box演奏

和人类玩家不同,只要你不打断AI B-Boxer Vid,它就永远不会累。而且它还有一个特殊技能:可以用任何声音合成B-Box。

9310
来自专栏hadoop学习笔记

自然语言处理怎么最快入门?

自然语言处理说白了,就是让机器去帮助我们完成一些语言层面的事情,典型的比如:情感分析、文本摘要、自动问答等等。我们日常场景中比较常见到的类似Siri、微软小冰之...

13120
来自专栏AI科技评论

Andrej Karpathy发文谈神经网络:这不仅仅是分类器,这是一种新的软件开发思想

AI科技评论按:有越来越多的传统编程语言(C、C++、Java)等程序员开始学习机器学习/深度学习,而对机器学习/深度学习的研究人员来说,编程也是必备技巧。那么...

33050
来自专栏机器之心

前沿 | 硼酸钡钠,一种因机器学习而诞生的LED荧光粉

10 月 22 日,化学系助理教授 Jakoah Brgoch 及其实验室成员在 Nature Communications 期刊上发表了关于该研究的论文。

12910
来自专栏企鹅号快讯

这个高仿真框架AI2-THOR,想让让强化学习快速走进现实世界

AlphaGo的节节胜利,向人们展示了强化学习的强大能力。但要是想让这种方法作用于现实世界,指挥机器人完成开门、拿东西、放东西等等对人类来说轻而易举的任务,还需...

36260
来自专栏AI科技评论

业界 | 一文看懂谷歌 NYC 算法与优化业务全景(附重点论文下载)

AI 科技评论消息,众所周知,谷歌的研究团队遍布世界各地,而纽约自然也是非常重要的一个地点,尤其是多个谷歌算法研究小组的孕育地。目前,谷歌算法优化团队为谷歌产品...

37060
来自专栏量子位

迁移学习比赛:OpenAI喊你重温「音速小子索尼克」

可算法的训练和测试环境都是同一个,这就会让那些本身带有超参数和靠死记硬背的算法获得不错的结果。

9410
来自专栏人工智能快报

德科学家发现新的神经网络学习方法

沙沙响动的树叶,吱吱作响的树枝:对老鼠来说,这些感觉看起来是无害的,但如果有一只猫突然从灌木丛窜出来就不同了。在这种情况下,这些现象就变成了能够提示迫在眉睫的生...

32130

扫码关注云+社区

领取腾讯云代金券