前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【头条】谷歌发布全新TensorFlow 库tf.Transform;百度将Ring Allreduce算法引入深度学习

【头条】谷歌发布全新TensorFlow 库tf.Transform;百度将Ring Allreduce算法引入深度学习

作者头像
AI研习社
发布2018-03-29 16:04:16
1.4K0
发布2018-03-29 16:04:16
举报
文章被收录于专栏:AI研习社

谷歌发布全新 TensorFlow 库“tf.Transform”

谷歌表示,tf.Transform 将改善 TensorFlow 的数据预处理和格式转化难题。

以下是谷歌对tf.Transform 的技术介绍:

“今天我们正式发布 tf.Transform,一个基于 TensorFlow 的全新功能组件,它允许用户在大规模数据处理框架中定义预处理流水线(preprocessing pipelines),同时还可以将这些流水线导出,将其作为 TensorFlow 计算图(TensorFlow graph)的一部分。 用户可以通过组合 Python 函数来定义该流水线,然后在 Apache Beam 框架下通过 tf.Transform 执行。(注:Apache Beam 是一个用于大规模的、高效的、分布式的数据处理的开源框架)目前,基于 Apache Beam 框架的流水线可以在 Google Cloud Dataflow 平台上运行,并计划在未来支持更多的平台(可能包括 Apache Apex,Apache Flink 和 Apache Spark 等)。值得一提的是,通过 tf.Transform 导出的 TensorFlow 计算图还可以在模型预测阶段将这种数据预处理步骤复用(例如,通过 Tensorflow Serving 提供模型时)。”

GitHub:https://github.com/tensorflow/transform

谷歌博客:http://research.googleblog.com/2017/02/preprocessing-for-machine-learning-with.html

百度将 Ring Allreduce 算法引入深度学习

Ring Allreduce 本是 HPC (高性能计算机)领域的一项技术。日前,百度硅谷 AI 实验室已成功将其移植到深度学习平台,借此来加速 GPU 之间的数据传输速率。目前,在 GPU 并行计算中,它们之间的通信瓶颈是制约深度学习模型训练速度的主要障碍之一。百度宣布,Ring Allreduce 算法的引入将移除该瓶颈,大幅提升多 GPU 和分布式计算环境下的深度学习模型运算效率。雷锋网获得消息,该技术已被百度成功应用于语音识别。

该算法以库和 Tensorflow 补丁的形式向开发者开源,分别为 baidu-allreduce 和 tensorflow-allreduce,已在 GitHub 上线。

GitHub:https://github.com/baidu-research/baidu-allreduce

https://github.com/baidu-research/tensorflow-allreduce

详情:http://www.leiphone.com/news/201702/QaSmvdQNbiY4CxBy.html

百度博客(英文):http://research.baidu.com/bringing-hpc-techniques-deep-learning/

卡巴斯基发布操作系统 Kaspersky OS

与 Linus、Windows,Mac OS 等优先系统兼容性和通用性的考虑不同,Kaspersky OS 的设计目的有且只有一个:最大化安全。因此 Kaspersky OS 采用了 Flux 高级安全内核架构(FLASK)。卡巴斯基不但表示 Kaspersky OS 要做世界上最安全的操作系统,还宣称, Kaspersky OS 的密钥只有量子计算机级别的计算能力才能破解。

AI研习社获知,该系统面向的并非消费者终端(PC),而是网络设备、工业控制系统和物联网设备。它同时兼容 X86 和 ARM 两大架构平台。值得注意的是,卡巴斯基声称该系统和 Linux 没有任何关系,从头到尾完全自行设计,并因此耗费了巨大人力——公司 CEO Eugene Kaspersky 表示,该系统秘密研制已有 14 年。

法国研究人员实现用深度学习预测衰老长相

众所周知,此前的深度学习技术虽然能将输入的年轻人脸图像,输出为老年图像,但在这过程中会失去一些面部特征与识别信息,其结果并不准确——严格来说,输出的图像不能说是对同一个人衰老长相的预测。

但现在,法国的一组研究人员成功实现了用深度学习算法,将同一个人的面对照片做“衰老”或“年轻化”处理。换句话说,既能预测老年相貌,也能重现年轻时的面容。上图是研究结果示范。

该研究发表于 ArXiv,题目为“Face Aging With Conditional Generative Adversarial Networks”。

“老得不敢拍照片”或许将退出历史舞台。美图对此怎么看?

ArXiv:https://arxiv.org/abs/1702.01983

AMD 八核十六线程 Ryzen“锐龙”CPU 全球同步预售

AMD 于昨晚 AMD Ryzen Tech Day 正式发布 Ryzen。这来得有些突然——此前媒体与行业人士普遍估计 Ryzen 将在 MWC 发布。不过,Ryzen 发货时间仍然是 3 月 3 日,目前预售开启。

我们来看看预售的三款八核十六线程 CPU 国行售价:

  • Ryzen 7 1800X 3999 元
  • Ryzen 7 1700X 3099 元
  • Ryzen 7 1700 2499 元

不同电商平台上有 200~300 元不等的预订优惠,感兴趣的抓紧。

AI研习社提醒:由于事出突然,全世界范围内 Ryzen 的评测还没有放出。目前我们对于它的所有了解,完全基于 AMD 官方宣传信息,以及此前泄露的工程版本芯片跑分。因此,对于这三款芯片之间的性能差距到底有多大、是否值得这中间的差价,尚无定论。业内对“X ”版本性能强在哪里、与非 X 版本的超频潜力差别也尚有疑虑。仅给正在选择的买主做个提醒。

史上最强凌动 英特尔发布 Atom C3000

这是凌动产品线首个 16 核 CPU,它整合了多项多见于服务器芯片中的技术:比如 RAS 功能,该功能可即时修正数据错误,并防止网络和存储设备崩溃。 与现有凌动产品线面向移动设备的定位不同,Atom C3000 的服务对象将是存储阵列、网络设备和物联网设备。将为它们带来更强大的数据处理能力。

简而言之,这是款与消费者无关、但关乎网络设备开发商的凌动。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-02-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI研习社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 谷歌发布全新 TensorFlow 库“tf.Transform”
  • 百度将 Ring Allreduce 算法引入深度学习
  • 卡巴斯基发布操作系统 Kaspersky OS
  • 法国研究人员实现用深度学习预测衰老长相
  • AMD 八核十六线程 Ryzen“锐龙”CPU 全球同步预售
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档