初识机器学习和人工智能

近日,英国皇家学会(Royal Society)发布了一份题为《机器学习:能通过样本进行学习的计算机的力量与希望(Machinelearning: the power and promise of computers that learn by example)》的专题报告。

以机器学习为代表的人工智能技术是当下最为热门的技术研究方向之一,其被认为对经济、社会、科学等都会有颠覆性的重大影响。

该报告对机器学习进行了较为全面的概述,其中涉及到机器学习的基本概念、发展历程、应用、创造价值的方式和研究前沿等。

值得一提的是,该报告的参与团队阵容非常强大,其中包括 Uber 的首席科学家 Zoubin Ghahramani 教授、Google DeepMind 的联合创始人兼 CEO Demis Hassabis 博士和亚马逊机器学习主管 Neil Lawrence 教授等。、

本文对其中机器学习和人工智能的发展历史、机器学习的典型问题及现有方法的局限性进行了翻译,带领读者对机器学习和人工智能进行初步认识,感兴趣的读者也可下载报告:

机器学习和人工智能的发展

机器学习中的典型问题

机器学习可以运用数据分析去检测模型,并在这些基础上进行预测。

怎样将机器学习运用在实践中?以各种方式运用不同的模型去分析数据(见第1.3节),下面是机器学习如何通过神经网络检测字迹的一个例子。

例子:通过神经网络检测字迹

机器学习在笔迹检测这个领域有着极高的准确率。神经网络就是其中一种方法,将各层计算单元相连接,这受到了大脑内部神经元连接方式的启发。

输入单元接受外部世界的信息,而输出层输出关于输入数据的决定。其他层的主要贡献是输入数据的各层传输。

在手写识别中,特征抽取系统通过识别每个字母的构成元素来学习字母的特点。

例如,如果一条短横线垂直于一条竖线,这很可能是L。通过创建每个字母的组成规则, 系统能够学习每个字母的关键特征, 通过组成特征来识别每个手写字符。

特征识别的启用可以让神经网络在大量书写文本中得到训练。经过训练之后,这个系统可以检测新的文本之中的相关特征,然后决定它面前的文本是哪一个字母。

在训练之中,反向传播算法可以提高系统的准确性,通过比较系统输出(系统预测的字母)和真正的输出(用户定义)的,计算两者的不同,优化权值来提高准确率。

现有方法的局限

尽管近年来取得了很多进展,机器学习的使用仍然受到限制。例如,一些机器学习的方法依靠大量标签数据,而这些数据的创建和管理需要大量的资源和时间。

赋予系统理解上下文的能力或者常识,较为困难。当专业知识失灵时,人们往往依靠常识而采取行动,尽管这不是最优选择,但不会造成重大损失。

当前的机器学习系统并不能定义或者编码这种行为,这就意味着当系统遭遇失败时,很可能会引发一连串的失败。

人类善于将解决问题的办法从一个领域转移到另外一个领域,这对掌握了最新机器学习技能的计算机而言仍然是一个挑战。

可解释性是问题域之间的信息转移的一大挑战。可解释性也可以看作是如何将学习系统中以编码呈现的知识以一种简单易懂的方式呈现出来。

在现实中有很多约束条件,例如自然法则(物理现象)和数学规律(逻辑),这些约束条件很难融入进机器学习之中。如果能将约束条件编入程序,我们在学习中就能更加高效地利用数据。

弄清人类的意图是十分复杂的,首先就要对我们自己有一个深刻的了解。当前的方法对于人类的理解还是有限的,特别是在某些领域内。

这就带来了一些挑战,例如在协同环境里的机器人助手以及无人驾驶汽车。在这些领域内,重大的技术进步,将会打破这些局限限。

附:报告目录

执行摘要

推荐

章节一:机器学习

· 1.1从数据中学习的系统

· 1.2皇家学会的机器学习项目

· 1.3什么是机器学习

· 1.4日常生活中的机器学习

· 1.5机器学习、统计、数据科学、机器人和人工智能

· 1.6机器学习的发源与演变

· 1.7机器学习中的典型问题

章节二:机器学习的新兴应用

· 2.1在公共与私人部门中潜在的近期应用

· 2.2研究中的机器学习

· 2.3增加英国对机器学习的吸收能力

章节三:从数据中提取价值

· 3.1机器学习帮助从大数据中提取价值

· 3.2创造支持机器学习的数据环境

· 3.3扩展开放数据的生命周期需要开放的标准

· 3.4开放数据技术性替代:模拟与合成类数据

章节四:从机器学习创造价值

· 4.1人力资本,在各个层次上构建技能

· 4.2机器学习和产业战略

章节五:社会中的机器学习

· 5.1机器学习和公众

· 5.2与机器学习应用有关的社会问题

· 5.3管理数据使用对机器学习的含义

· 5.4机器学习与未来的工作

章节六:机器学习研究的新浪潮

· 6.1社会中的机器学习:主要的科学与技术挑战

· 6.2可解释且透明

· 6.3核实且稳健

· 6.4隐私与敏感数据

· 6.5处理真实数据:公平且完善的分析渠道

· 6.6因果关系

· 6.7人机交互

· 6.8安全与控制

· 6.9支持机器学习研究的新浪潮

附加/术语/附录

机器学习中的典型问题

术语

附录

内容来源:灯塔大数据

原文发布于微信公众号 - 灯塔大数据(DTbigdata)

原文发表时间:2017-05-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

18岁华裔少年颠覆量子加速优势,推动量子算法经典化

国内量子计算专家也对此事发表了不同观点。如百度量子实验室负责人段润尧在朋友圈评论说,「这是有关经典推荐算法的非常有意思的进展。原先 Kerenidis 和 Pr...

691
来自专栏数据科学与人工智能

【机器学习】深度学习 vs 机器学习 vs 模式识别

作者:Tomasz Malisiewicz 【编者按】本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisiewicz的...

3068
来自专栏ATYUN订阅号

【学术】3D模型也能做对抗样本—CSAIL做出被谷歌AI识别成枪支的玩具乌龟

在过去,我们欺骗AI的对抗样本往往是平面图。而近日CSAIL(麻省理工学院的计算机科学与人工智能实验室)的研究人员展示了有史以来第一个生成3D对象愚弄神经网络的...

3516
来自专栏数据科学与人工智能

机器学习与大数据风控

一个普遍的看法是,机器学习等人工智能技术会最先在金融领域落地。金融行业是最早实现信息化的行业,有丰富的数据积累,且对于用技术提升效率有更多的需求。 现在也有越来...

4618
来自专栏人工智能头条

深度学习 vs 机器学习 vs 模式识别

1403
来自专栏人工智能快报

专家展望未来5年深度学习技术的发展

2015年12月29日,美国科技资讯网Re-work发文,总结了多位深度学习专家对未来5年深度学习技术的发展预测。 (1)人工智能研究机构OpenAI的研究主任...

3356
来自专栏镁客网

厉害了Facebook,最新计算机视觉每秒可训练4万张图片

1213
来自专栏AI科技评论

学界 | 谷歌研发能处理多域多任务的机器学习模型——MultiModel

我们知道,人工智能领域虽然发展迅速,但大部分机器学习的系统都是针对特定的学习任务存在的,例如会下棋的AlphaGo,识别人脸的图像识别模型,识别语音语义的智能语...

3629
来自专栏大数据挖掘DT机器学习

面试机器学习、大数据岗位时遇到的各种问题

作者:@太极儒 自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言处理...

37916
来自专栏人工智能快报

科学家提出超越传统机器学习的量子算法

来自瑞士、英国和新加坡的科学家提出了一种新的量子算法,其进行数据分析的速度可超越传统机器学习算法,相关成果已发表在《物理评论快报》上。 计算机“思考”的一种方法...

2889

扫码关注云+社区

领取腾讯云代金券