专栏首页机器学习算法与Python学习代码分享系列(1)之感知机【代码可下载】

代码分享系列(1)之感知机【代码可下载】

关键字全网搜索最新排名

【机器学习算法】:排名第一

【机器学习】:排名第二

【Python】:排名第三

【算法】:排名第四

自从本公众号创建以来就一直深究于统计学习、深度学习等相关机器学习算法原理方面的解读,累计推文四百余篇。开设了机器学习的各个系列,唯独一直没有开设各个算法的代码分享系列,虽然中间会穿插着分享一些部分代码,但是不够全面,不够系统。18年,正式踏入工作,但同时作为《机器学习算法与python学习》的运营,总想着要继续为这7万多小伙伴做些什么。今天,在整理C4.5的时候突然想到可以开设一个代码分享的系列,分享出来的代码有可能存在性能和建模精度等问题,希望大家继续完善,可以在微信讨论群里面讨论。

代码下载方式见文末

今天,分享给大家的是感知机的python代码。感知机的原理可以参考之前的文章,如下所示:

感知机详解

机器学习(7)之感知机python实现

python代码如下(版本py2.7)

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

class Perceptron(object):
    def __init__(self, input_num, activator):
        '''
        初始化感知器,设置输入参数的个数,以及激活函数。
        激活函数的类型为double -> double
        '''
        self.activator = activator
        # 权重向量初始化为0
        self.weights = [0.0 for _ in range(input_num)]
        # 偏置项初始化为0
        self.bias = 0.0

    def __str__(self):
        '''
        打印学习到的权重、偏置项
        '''
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)

    def predict(self, input_vec):
        '''
        输入向量,输出感知器的计算结果
        '''
        # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
        # 最后利用reduce求和
        return self.activator(
            reduce(lambda a, b: a + b,
                   map(lambda (x, w): x * w,  
                       zip(input_vec, self.weights))
                , 0.0) + self.bias)
 
    def train(self, input_vecs, labels, iteration, rate):
        '''
        输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
        '''
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)

    def _one_iteration(self, input_vecs, labels, rate):
        '''
        一次迭代,把所有的训练数据过一遍
        '''
        # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
        # 而每个训练样本是(input_vec, label)
        samples = zip(input_vecs, labels)
        # 对每个样本,按照感知器规则更新权重
        for (input_vec, label) in samples:
            # 计算感知器在当前权重下的输出
            output = self.predict(input_vec)
            # 更新权重
            self._update_weights(input_vec, output, label, rate)

    def _update_weights(self, input_vec, output, label, rate):
        '''
        按照感知器规则更新权重
        '''
        # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用感知器规则更新权重
        delta = label - output
        self.weights = map(
            lambda (x, w): w + rate * delta * x,
            zip(input_vec, self.weights))
        # 更新bias
        self.bias += rate * delta


def f(x):
    '''
    定义激活函数f
    '''
    return 1 if x > 0 else 0


def get_training_dataset():
    '''
    基于and真值表构建训练数据
    '''
    # 构建训练数据
    # 输入向量列表
    input_vecs = [[1,1], [0,0], [1,0], [0,1]]
    # 期望的输出列表,注意要与输入一一对应
    # [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
    labels = [1, 0, 0, 0]
    return input_vecs, labels    


def train_and_perceptron():
    '''
    使用and真值表训练感知器
    '''
    # 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
    p = Perceptron(2, f)
    # 训练,迭代10轮, 学习速率为0.1
    input_vecs, labels = get_training_dataset()
    p.train(input_vecs, labels, 10, 0.1)
    #返回训练好的感知器
    return p


if __name__ == '__main__': 
    # 训练and感知器
    and_perception = train_and_perceptron()
    # 打印训练获得的权重
    print and_perception
    # 测试
    print '1 and 1 = %d' % and_perception.predict([1, 1])
    print '0 and 0 = %d' % and_perception.predict([0, 0])
    print '1 and 0 = %d' % and_perception.predict([1, 0])
    print '0 and 1 = %d' % and_perception.predict([0, 1])

对话框回复

20180211

本文分享自微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-02-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 基于TensorFlow实现自编码器(附源码)

    关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 AE简介 传统的机器学习很大程度上依...

    昱良
  • 手把手教你用Python实现“坦克大战”,附详细代码!

    今天,我们使用Python以及强大的第三方库来实现一个简单的坦克大战游戏。【文中代码点击阅读原文下载,可直接运行】

    昱良
  • 高效使用 Python 可视化工具 Matplotlib

    Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表。本文主要推荐一个学习使用Matplotli...

    昱良
  • 课时44:魔法方法:简单定制

    基本要求: 1>> 定制一个计时器的类 2>> start和stop方法代表启动计时和停止计时 3>> 假设计时器对象t1,print(t1)和直接调用t1均显...

    py3study
  • 由python端口转发脚本看asyncore模块

    asyncore, 端口转发, ...

    phith0n
  • Python 学习入门(36)—— @property属性

    @property 可以将python定义的函数“当做”属性访问,从而提供更加友好访问方式,但是有时候setter/getter也是需要的

    阳光岛主
  • Python调用ansible2.4

    py3study
  • 聊聊 Python 面试最常被问到的几种设计模式(下)

    构建者模式,是将一个复杂对象的构造与表现进行分离,利用多个步骤进行创建,同一个构建过程可用于创建多个不同的表现

    AirPython
  • 【算法】先生,您点的查找套餐到了(二分、插值和斐波那契查找)

    参考资料 《算法(java)》                           — — Robert Sedgewick, Kevin Wayne 《数据结...

    外婆的彭湖湾
  • 《coredump问题原理探究》Linux x86版7.2节vector coredump例子

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xuzhina/article/detai...

    血狼

扫码关注云+社区

领取腾讯云代金券