前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【下载】深度学习与围棋实战书籍《Deep Learning and the Game of Go》

【下载】深度学习与围棋实战书籍《Deep Learning and the Game of Go》

作者头像
WZEARW
发布2018-04-11 16:37:56
4.1K0
发布2018-04-11 16:37:56
举报
文章被收录于专栏:专知

【导读】深度学习平台aetros.com的联合创始人Max Pumperla博士撰写的深度学习与围棋实战《Deep Learning and the Game of Go》深入检出地讲解了各个深度学习和强化学习的应用,教您如何打造自己的围棋机器。

在在2016年初,大部分围棋(Go)的玩家都会告诉你,一台机器永远不会打败围棋世界冠军。 然后,Google的AlphaGo AI以3-0击败了全球最强的选手柯洁。 六个月后,Alpha Go Zero以89-11击败了AlphaGo. AlphaGo对深度学习系统来说是一个令人难以置信的成就,AlphaGo也是一个引人入胜的话题。

“深度学习”和“围棋游戏”开启了深度学习和人工智能的世界,教您如何打造自己的围棋机器。 您将探索像神经网络和强化学习这样的重要的深度学习想法,甚至可以将您的Go游戏提升一两个点。 AI专家和围棋爱好者Max Pumperla和Kevin Ferguson带领您一步步建立您的围棋机器人,把它从永远的失败者训练成强大的围棋手。

请关注专知公众号

  • 后台回复“DLG” 就可以获取深度学习与围棋实战 第一章 pdf下载
  • 后台回复“DLGC” 就可以获取深度学习与围棋实战 代码下载

▌图书介绍


关于该技术

围棋(GO)是一个古老的战略游戏,学习比国际象棋要简单得多,同时也难以掌握,因为玩家在每一回合中都有更多的潜在动作。 (国际象棋有20个可能的开局动作,围棋有361个!)使用传统的编程技术来构建一个合格的下棋机器几乎是不可能的,更不用说赢了。通过使用先进的AI技术,尤其是深度学习和强化学习,您可以训练您的Go机器人关于游戏的规则和战术。因为深度学习系统越用越好,你会发现它会从一直失败发展成为无与伦比的战略家!

关于该书

“深度学习”和“围棋游戏”将教你如何通过构建一个围棋游戏AI,将深度学习的力量应用于复杂的人情推理任务中。在教你机器和深度学习的基础之后,你将使用Python来构建一个机器人,然后教它游戏的规则。关于围棋的所有知识都包括在内,从游戏的运作,到检查非法动作,从损失中学习,实施制胜策略。

随着规则的降低和深入的强化学习,你会在Keras的帮助下把你的机器人变成一个高手。您将会实时看到,随着您应用新的学习技巧和更复杂的策略,您的机器人将成为更好的玩家。你会惊奇,因为你的AI是用自己需要的技能来武装自己。不用多久,你就会被GO一次次地击败!

书中介绍了什么

  • 神经网络入门
  • 建立你的AI AI
  • 改进你的Go-bot
  • 强化学习

关于读者

没有深度学习的经验要求。需要的只是高中数学和基本的Python技能。这本书也能教你如何玩Go。

关于作者

Max Pumperla是一名数据科学家和工程师,专门研究深度学习及其应用。他目前在Skymind担任深度学习工程师,是深度学习平台aetros.com的联合创始人。

Kevin Ferguson在分布式系统和数据科学方面拥有18年的经验。他是Honor的数据科学家,在Google和Meebo等公司工作过。 Max和Kevin一起是betago的合着者,betago是Python中开发的极少数开源的Go机器人之一。

参考链接:

https://www.manning.com/books/deep-learning-and-the-game-of-go

▌详细目录


▌第一部分 人工智能与围棋


▌第二部分 WHY TO GO


▌第三部分 BRINGING IT ALL TOGETHER


▌第四部分 附录


▌第一章详细内容


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-12-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 专知 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档