前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >(数据科学学习手札17)线性判别分析的原理简介&Python与R实现

(数据科学学习手札17)线性判别分析的原理简介&Python与R实现

作者头像
Feffery
发布2018-04-17 11:47:25
1.8K0
发布2018-04-17 11:47:25
举报

之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析:

线性判别

最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方法来对新样本进行分类,主要步骤如下:

  Step1:求线性判别函数;

  Step2:计算判别界值;

  Step3:建立判别标准(这里与模糊分类中的隶属度有些相似,即离哪一类的投影中心最近,就将样本判别为哪一类)

下面分别利用Python,R,基于著名的花卉分类数据集iris进行演示:

Python

我们利用sklearn包中封装的LinearDiscriminantAnalysis对iris构建线性判别模型,因为LDA实际上是将高维数据尽可能分开的投影到一条直线上,因此LDA也可以对特定数据进行降维转换:

代码语言:javascript
复制
'''Fisher线性判别分析'''
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from matplotlib.pyplot import style
from sklearn.model_selection import train_test_split

style.use('ggplot')

iris = datasets.load_iris()

X = iris.data
y = iris.target

'''展示LDA的降维功能'''
target_names = iris.target_names

'''设置压缩到1维'''
lda = LinearDiscriminantAnalysis(n_components=1)

'''利用线性判别函数将四维的样本数据压缩到一条直线上'''
X_r2 = lda.fit(X,y).transform(X)
X_Zero = np.zeros(X_r2.shape)
'''绘制降维效果图'''
for c,i,target_names in zip('ryb',[0,1,2],target_names):
    plt.scatter(X_r2[y == i],X_Zero[y == i],c=c,label=target_names,s=5)

plt.legend()
plt.grid()

降维后的效果图如下:

下面正式对iris数据集进行LDA分类,这里用到一个新的方法,是sklearn.model_selection.train_test_split,它的作用是根据设置的训练集与测试集的比例进行随机分割,我们利用从样本集中分割的7成数据作为训练集,3成数据进行测试,过程及结果如下:

代码语言:javascript
复制
'''利用sklearn自带的样本集划分方法进行分类,这里选择训练集测试集73开'''
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
'''搭建LDA模型'''
lda = LinearDiscriminantAnalysis(n_components=1)
'''利用分割好的训练集进行模型训练并对测试集进行预测'''
ld = lda.fit(X_train,y_train).predict(X_test)
'''比较预测结果与真实分类结果'''
print(np.array([ld,y_test]))
'''打印正确率'''
print('正确率:',str(lda.score(X_test,y_test)))

结果如下:

可以看出,在iris上取得了非常高的准确率。

R

在R中做LDA需要用到MASS包中的lda(formula~feature1+feature2+...+featuren,data=df),其中formula表示数据集中表示分类标注的列,右边的各种feature表示将要使用到的分类特征值,也即是构建线性判别函数要用到的基础变量,data指保存全部数据的数据框,具体过程如下:

代码语言:javascript
复制
> #Fisher线性判别
> rm(list=ls())
> library(MASS)
> data(iris)
> data <- iris
> data$Species = as.character(data$Species)
> #创造类别变量
> data$type[data$Species == 'setosa'] = 1
> data$type[data$Species == 'versicolor'] = 2
> data$type[data$Species == 'virginica'] = 3
> #利用简单随机抽样将样本集划分为训练集与验证集
> sam <- sample(1:length(data[,1]),105)
> train <- data[sam,]
> test <- data[-sam,]
> #根据样本数据创建线性判别分析模型
> ld <- lda(type~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=train)
> #将样本集作为验证集求分类结果
> Z <- predict(ld)
> #保存预测类别
> newType <- Z$class
> #与真实分类结果进行比较
> cbind(train$type,Z$x,newType)
             LD1         LD2 newType
74  2 -2.0419740 -1.16551052       2
93  2 -1.2286978 -1.34868982       2
124 3 -4.2056288 -0.39378496       3
43  1  7.0499296 -0.38479505       1
141 3 -6.3297144  1.43240686       3
112 3 -5.2009805 -0.39665336       3
75  2 -1.2076317 -0.53028083       2
83  2 -0.8607055 -1.04255122       2
128 3 -3.7958024  0.38283281       3
134 3 -3.5521695 -0.79338125       2
84  2 -4.1930475 -0.86304028       3
80  2  0.2455854 -1.48598565       2
16  1  8.9754828  2.99336222       1
35  1  6.7862663 -0.74053169       1
64  2 -2.4399568 -0.53150309       2
79  2 -2.4024680 -0.24830622       2
142 3 -4.9647448  1.48158101       3
54  2 -2.2217845 -1.93554530       2
14  1  7.3092968 -0.99420385       1
119 3 -8.8253015 -0.67042900       3
71  2 -3.3701925  0.94839271       3
44  1  6.2098650  0.99672773       1
29  1  7.6841973  0.08156876       1
62  2 -1.7099434  0.15332464       2
59  2 -1.6648086 -0.67372500       2
77  2 -2.3932456 -0.84052244       2
27  1  6.6078477  0.36272030       1
101 3 -7.2690741  1.94879260       3
91  2 -2.1739793 -1.53761667       2
40  1  7.4330661  0.03443993       1
103 3 -5.9833783  0.46642759       3
121 3 -5.9399677  1.45493705       3
51  2 -1.3784535  0.24058778       2
88  2 -2.5153892 -2.12899905       2
6   1  7.5334551  1.60652494       1
148 3 -4.7085798  0.61397476       3
76  2 -1.3919721 -0.13234144       2
10  1  7.0733099 -0.92823629       1
7   1  7.0416936  0.27174257       1
104 3 -5.1966351 -0.20937105       3
24  1  6.0120553  0.24387476       1
137 3 -6.0383747  2.20984770       3
61  2 -1.2257443 -3.03469429       2
41  1  7.6466593  0.57623503       1
26  1  6.4775174 -1.04708182       1
70  2 -1.0443574 -1.74662921       2
31  1  6.5351351 -0.78766052       1
85  2 -2.5818237  0.01276122       2
36  1  7.5972776 -0.33972390       1
4   1  6.6085362 -0.73929708       1
130 3 -4.2970292 -0.42496657       3
95  2 -1.8418994 -0.99664464       2
111 3 -4.1644831  1.17871159       3
117 3 -4.7101562  0.09594447       3
48  1  6.9765285 -0.43315849       1
106 3 -7.0303766  0.13158736       3
69  2 -3.5167119 -2.05931691       2
131 3 -5.9675456 -0.52249341       3
92  2 -2.0719645 -0.22536449       2
22  1  7.3872921  1.18564382       1
39  1  6.6977209 -0.90199151       1
125 3 -5.3082628  1.33894916       3
47  1  7.9455957  1.02129249       1
108 3 -5.9474167 -0.54626897       3
123 3 -7.2281863 -0.62126561       3
25  1  6.4877846 -0.15448692       1
96  2 -0.9672993 -0.40896608       2
149 3 -5.4267988  2.11763536       3
58  2 -0.1967945 -1.90480909       2
100 2 -1.4146638 -0.69091758       2
107 3 -4.3326495 -0.90276305       3
89  2 -1.1216984 -0.17330958       2
67  2 -2.4633370  0.01193815       2
45  1  6.7958450  1.25408059       1
138 3 -4.5932952  0.35495424       3
30  1  6.6519961 -0.52865075       1
17  1  8.3010066  1.79668640       1
9   1  6.3297286 -1.20813011       1
135 3 -4.6952607 -1.73516107       3
18  1  7.5140148  0.52828312       1
145 3 -6.4564371  2.08976755       3
68  2 -0.6703941 -1.51304115       2
12  1  7.0634482 -0.01186583       1
23  1  8.4484974  0.79139590       1
20  1  7.8504400  1.25653745       1
15  1  9.4800594  1.72576966       1
147 3 -5.0367690 -0.77081719       3
46  1  6.4557628 -0.76347342       1
60  2 -1.7902528 -0.66467281       2
19  1  7.8221244  1.15898751       1
144 3 -6.3829867  1.36026786       3
1   1  7.8010583  0.34057853       1
90  2 -1.8695758 -1.41834884       2
53  2 -2.2846205  0.07502495       2
115 3 -6.4317784  0.89801781       3
146 3 -5.4512238  1.17626549       3
78  2 -3.3451866  0.14511863       2
99  2  0.3864166 -1.31670824       2
118 3 -6.0412297  2.34012590       3
38  1  8.1457196  0.41229523       1
139 3 -3.6631579  0.43078471       3
105 3 -6.4339941  0.70414177       3
132 3 -4.7729922  2.10651473       3
110 3 -6.3994587  2.67334311       3
72  2 -0.9858025 -0.64502336       2
> #打印混淆矩阵
> (tab <- table(newType,train$type))
       
newType  1  2  3
      1 35  0  0
      2  0 33  1
      3  0  2 34
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(train[,1]))
Accuracy: 0.9714286
> #将验证集代入训练好的模型中计算近似泛化误差
> T <-predict(ld,test)
> #与真实分类结果进行比较
> cbind(test$type,T$x,T$class)
             LD1         LD2  
2   1  6.8020498 -0.95158956 1
3   1  7.2276597 -0.38602966 1
5   1  7.9179194  0.59958829 1
8   1  7.3738228  0.03485147 1
11  1  8.1391093  0.80900002 1
13  1  7.0298500 -1.13888262 1
21  1  7.2270204 -0.06187541 1
28  1  7.6684138  0.29262662 1
32  1  7.0367090  0.40861452 1
33  1  9.0120836  1.65651141 1
34  1  9.2707624  2.14912000 1
37  1  8.2299196  0.38647275 1
42  1  5.2371900 -2.52488607 1
49  1  8.0798659  0.80941155 1
50  1  7.3896062 -0.17620640 1
52  2 -1.6371815  0.52584233 2
55  2 -2.4742435 -0.55650250 2
56  2 -2.1822152 -0.88107904 2
57  2 -2.1911397  0.87747596 2
63  2 -1.2405414 -2.75931501 2
65  2 -0.3383635 -0.19420599 2
66  2 -1.1566243  0.12584525 2
73  2 -3.6967069 -1.47409522 2
81  2 -1.0878173 -1.95727554 2
82  2 -0.6088858 -2.09743977 2
86  2 -1.8089897  1.23238953 2
87  2 -2.0193315  0.17092876 2
94  2 -0.3136555 -2.16381886 2
97  2 -1.4304473 -0.47985972 2
98  2 -1.3261184 -0.52945776 2
102 3 -5.1726649 -0.29910341 3
109 3 -6.0478550 -1.34049085 3
113 3 -5.3935569  0.65782366 3
114 3 -5.6792727 -0.58064337 3
116 3 -5.4686329  1.64715619 3
120 3 -4.5946379 -2.29619567 3
122 3 -5.0183151  0.24310322 3
126 3 -4.9026833  0.37255836 3
127 3 -3.8968800 -0.08723483 3
129 3 -6.1746269  0.09473298 3
133 3 -6.4616705  0.28243757 3
136 3 -6.5857811  0.74428684 3
140 3 -4.9663213  0.96355072 3
143 3 -5.1726649 -0.29910341 3
150 3 -4.2980648  0.28857515 3
> #打印混淆矩阵
> (tab <- table(T$class,test$type))
   
     1  2  3
  1 15  0  0
  2  0 15  0
  3  0  0 15
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(test[,1]))
Accuracy: 1
> #Fisher线性判别
> rm(list=ls())
> library(MASS)
> data(iris)
> data <- iris
> data$Species = as.character(data$Species)
> #创造类别变量
> data$type[data$Species == 'setosa'] = 1
> data$type[data$Species == 'versicolor'] = 2
> data$type[data$Species == 'virginica'] = 3
> #利用简单随机抽样将样本集划分为训练集与验证集
> sam <- sample(1:length(data[,1]),105)
> train <- data[sam,]
> test <- data[-sam,]
> #根据样本数据创建线性判别分析模型
> ld <- lda(type~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width,data=train)
> #将样本集作为验证集求分类结果
> Z <- predict(ld)
> #保存预测类别
> newType <- Z$class
> #与真实分类结果进行比较
> cbind(train$type,Z$x,newType)
             LD1          LD2 newType
44  1  6.5356943  1.380095755       1
150 3 -5.0777607  0.353229454       3
48  1  7.2092979 -0.233679182       1
17  1  8.7810490  1.832128789       1
11  1  8.5106371  0.591364581       1
13  1  7.4261015 -0.949875862       1
82  2 -0.7168056 -1.805629506       2
19  1  8.2170070  0.870266056       1
123 3 -7.9020752 -1.233817765       3
23  1  8.7554448  0.980676590       1
59  2 -1.8788410 -0.915972039       2
70  2 -1.2367635 -1.516788339       2
146 3 -5.6852127  1.788579457       3
142 3 -5.0723482  2.082228707       3
115 3 -6.9597642  1.869494439       3
7   1  7.2188221  0.472577805       1
112 3 -5.6667730 -0.156736416       3
117 3 -5.4232144 -0.112017744       3
26  1  6.8888800 -0.860736454       1
111 3 -4.6405840  1.346460523       3
29  1  8.1491362  0.125965565       1
81  2 -1.2242456 -1.597693375       2
14  1  7.6286098 -0.598455540       1
110 3 -7.1444731  2.585994755       3
40  1  7.7798631  0.022078382       1
39  1  6.9782244 -0.504346286       1
68  2 -1.0104685 -1.671771426       2
20  1  8.0502422  1.117799195       1
31  1  6.7929797 -0.656064848       1
134 3 -4.1319678 -1.006493240       2
73  2 -4.0110318 -1.372974920       2
4   1  6.8227612 -0.537268125       1
108 3 -6.6972047 -1.217364668       3
54  2 -2.3695531 -1.376553027       2
148 3 -5.1575482  0.848139667       3
141 3 -6.8305530  1.864676411       3
109 3 -6.6173517 -1.422188092       3
50  1  7.7923809 -0.058826655       1
91  2 -2.7513769 -1.544578568       2
97  2 -1.8728790 -0.435815301       2
96  2 -1.4911207 -0.557876549       2
77  2 -2.5464899 -1.021564544       2
66  2 -1.2439344  0.003029162       2
145 3 -7.0771380  2.462076368       3
38  1  8.3218303  0.213545770       1
45  1  6.7744745  0.999164236       1
58  2 -0.3713519 -1.340382308       2
35  1  7.1622529 -0.552177665       1
36  1  8.1741719 -0.035844508       1
57  2 -2.7067243  0.719387605       2
27  1  6.9079284  0.551777520       1
132 3 -5.6031449  1.030132762       3
128 3 -4.3392145  0.561003821       3
87  2 -2.2635929 -0.006748767       2
88  2 -2.4886790 -1.851739918       2
118 3 -7.1004619  1.347087687       3
119 3 -9.4291409 -0.890616169       3
46  1  6.9234400 -0.316289540       1
33  1  9.0573501  1.063438766       1
10  1  7.4135836 -0.868970825       1
78  2 -3.6650096  0.105534552       2
32  1  7.6166932  0.640755164       1
139 3 -4.1962691  0.674830697       3
103 3 -6.5226603  0.373114540       3
43  1  7.2390794 -0.114882460       1
121 3 -6.4785762  1.623818440       3
15  1 10.1229028  1.482252025       1
125 3 -6.0718150  1.194903725       3
92  2 -2.5655637 -0.379597733       2
21  1  7.6071362 -0.210545218       1
116 3 -6.0199587  2.084095792       3
95  2 -2.2468978 -0.820309281       2
93  2 -1.3874483 -1.124059988       2
135 3 -5.6483660 -2.247095684       3
52  2 -1.9604386  0.420606745       2
37  1  8.8751646  0.414644969       1
127 3 -4.2307963  0.275427178       3
137 3 -6.8919261  2.468751536       3
98  2 -1.5631688 -0.569521563       2
72  2 -1.0384324 -0.432712540       2
80  2  0.2825956 -1.208391313       2
67  2 -3.1266046  0.070901690       2
120 3 -4.9979151 -2.051118149       3
114 3 -6.2027782  0.131952933       3
69  2 -3.4910411 -1.516772693       2
130 3 -4.8967334 -1.106964081       3
42  1  5.9270652 -1.555646363       1
64  2 -2.9521004 -0.683186676       2
86  2 -2.4035699  1.146743118       2
75  2 -1.3368410 -0.579461256       2
143 3 -5.8335378  0.090796722       3
140 3 -5.3380144  1.122071295       3
1   1  8.1663998  0.325667325       1
83  2 -1.0009115 -0.820471045       2
28  1  8.0234544  0.211840448       1
85  2 -3.3529324  0.080841383       2
89  2 -1.5995061 -0.127256512       2
18  1  7.9150690  0.642460485       1
147 3 -5.2724641 -0.214659306       3
105 3 -7.1968652  0.828583809       3
41  1  8.0580144  0.756287362       1
63  2 -1.1801689 -2.546513654       2
122 3 -5.6685504  0.829975549       3
107 3 -5.0735507 -0.234382628       3
47  1  8.0454637  0.692149004       1
> #打印混淆矩阵
> (tab <- table(newType,train$type))
       
newType  1  2  3
      1 36  0  0
      2  0 33  1
      3  0  0 35
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(train[,1]))
Accuracy: 0.9904762> #将验证集代入训练好的模型中计算近似泛化误差
> T <-predict(ld,test)
> #与真实分类结果进行比较
> cbind(test$type,T$x,T$class)
             LD1         LD2  
2   1  7.2879346 -0.63805255 1
3   1  7.5785711 -0.12979200 1
5   1  8.1836634  0.52536908 1
6   1  7.7566121  1.39670067 1
8   1  7.6666992  0.02704823 1
9   1  6.5916877 -0.80793523 1
12  1  7.1842622 -0.07186911 1
16  1  9.2604596  2.57316476 1
22  1  7.6684840  1.23986044 1
24  1  6.3832248  0.56001189 1
25  1  6.4159345 -0.39844020 1
30  1  6.8102433 -0.45636309 1
34  1  9.5320477  1.66891133 1
49  1  8.3974733  0.59633443 1
51  2 -1.5423430 -0.14371955 2
53  2 -2.5494836 -0.23440252 2
55  2 -2.6250939 -0.47214778 2
56  2 -2.7716342 -0.95711830 2
60  2 -2.1825564 -0.15706564 2
61  2 -1.2921165 -2.34199387 2
62  2 -2.0187853  0.38256324 2
65  2 -0.4493874  0.22229672 2
71  2 -4.0485780  1.06926437 3
74  2 -2.5798663 -1.51150491 2
76  2 -1.4875258 -0.18673290 2
79  2 -2.8043766 -0.14370961 2
84  2 -4.8532177 -0.86952245 3
90  2 -2.1086982 -0.98708920 2
94  2 -0.3886155 -1.54008407 2
99  2  0.5024002 -0.51222584 2
100 2 -1.7471972 -0.52169018 2
101 3 -8.2981213  2.15538466 3
102 3 -5.8335378  0.09079672 3
104 3 -6.0360789 -0.40566699 3
106 3 -7.7496056 -0.41373390 3
113 3 -5.8377150  0.82345220 3
124 3 -4.5041691 -0.03313161 3
126 3 -5.6507584 -0.30162799 3
129 3 -6.8073348  0.34501073 3
131 3 -6.4535806 -0.88255921 3
133 3 -7.0586655  0.66180389 3
136 3 -6.8585571  0.75916772 3
138 3 -5.4059508  0.08768402 3
144 3 -7.1039586  1.41107423 3
149 3 -6.2415407  2.37464228 3
> #打印混淆矩阵
> (tab <- table(T$class,test$type))
   
     1  2  3
  1 14  0  0
  2  0 15  0
  3  0  2 14
> #显示正确率
> cat('Accuracy:',sum(diag(tab))/length(test[,1]))
Accuracy: 0.9555556

可以看出,和Python中的效果相差无几。

以上就是关于线性判别的基本内容,如有意见望提出。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-03-23 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档