CVPR—II | 经典网络再现,全内容跟踪

今天首先给大家带来“YOLO”!也被上一篇“Faith”读者说对了,在此也感谢大家的关注与阅读,O(∩_∩)O谢谢

YOLO

看到这个封面,相信很多很多都阅读过,其实这是一篇“基于回归方法的深度学习目标检测算法”的经典之作,如果兴趣的您,可以再一次阅读。

会不会有朋友认为YOLO的缩写是You Only Live Once???O(∩_∩)O,其实是You Only Look Once

相比于之前介绍的几个网络,明显高于之前说的几个简单目标检测网络。下面来一个YOLO V2的宣传片!有兴趣的您,可以自己去做一个模型玩一玩,其实过程很不错!(“计算机视觉战队”微信平台的人脸检测与识别技术(怎么去创新?)也有简单的Demo。)

视频内容
视频内容

回归正题,开始说内部的内容!

我自己来总结下YOLO:

YOLO网络的结构和在之前得模型比较类似,主要是最后两层的结构,卷积层之后接了一个4096维的全连接层,然后后边又全连接到7*7*30维的张量上。实际上这个7*7就是划分的网格数,现在要在每个网格上预测目标两个可能的位置及这个位置的目标置信度和类别,也就是每个网络预测两个目标,每个目标的信息有4维坐标信息(中心点坐标+长宽),1个目标的置信度,还有类别数20(因为在VOC数据集上,所以是20),总共就是(4+1)*2+20=30维的张量。这样就可以利用前面4096维的全连接映射特征直接在每个网格上回归处目标检测需要的信息(BBClass)。

Result


AttentionNet

其实整个过程也是比价间的明了,不断去选择BB 的对角点,改变BB的尺寸大小。


最近也在整理资料,后期将分享在平台共享专栏!

(先让它有点神秘感)

未完待续!

原文发布于微信公众号 - 计算机视觉战队(ComputerVisionGzq)

原文发表时间:2017-07-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据派THU

教你用Python解决非平衡数据问题(附代码)

本文为你分享数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换。

962
来自专栏小鹏的专栏

tensorflow_cookbook--preface

Preface         TensorFlow在2015年11月由Google开放,从此,它已经成为GitHub上最受欢迎的机器学习库。 TensorFl...

18510
来自专栏深度学习自然语言处理

这些神经网络调参细节,你都了解了吗

今天在写本科毕业论文的时候又回顾了一下神经网络调参的一些细节问题,特来总结下。主要从weight_decay,clip_norm,lr_decay说起。

1542
来自专栏小鹏的专栏

用 TensorFlow 创建自己的 Speech Recognizer

参考资料 源码请点:https://github.com/llSourcell/tensorf... 语音识别无处不在,siri,google,讯飞输入法...

2986
来自专栏CSDN技术头条

使用GPU和Theano加速深度学习

【编者按】GPU因其浮点计算和矩阵运算能力有助于加速深度学习是业界的共识,Theano是主流的深度学习Python库之一,亦支持GPU,然而Theano入门较难...

2255
来自专栏机器之心

学界 | Ian Goodfellow等人提出对抗重编程,让神经网络执行其他任务

作者:Gamaleldin F. Elsayed、Ian Goodfellow、Jascha Sohl-Dickstein

1233
来自专栏生信技能树

机器学习算法之随机森林的R语言实现-表达芯片示例

终于还是要发这个系列了,其实我还没有准备好,机器学习系列,有一个公众号做的非常好,是中科院上海马普所的几个同学做的,过两天我会在此推送他们的学习目录,供大家欣赏...

48014
来自专栏专知

【前沿】Geoffery Hinton 的 NIPS2017 Capsule论文简读

10月26日,深度学习元老Hinton的NIPS2017 Capsule论文《Dynamic Routing Between Capsules》终于在arxiv...

2533
来自专栏机器之心

ACL 2018 | 神经语言模型如何利用上下文信息:长距离上下文的词序并不重要

2325
来自专栏量子位

无需在数据集上学习和预训练,这种图像修复新方法效果惊人 | 论文

林鳞 编译自 Github 量子位 出品 | 公众号 QbitAI Reddit上又炸了,原因是一个无需在数据集上学习和预训练就可以超分辨率、修补和去噪的方法:...

2959

扫码关注云+社区

领取腾讯云代金券