专栏首页计算机视觉战队深度网络的“从古至今”的蜕变

深度网络的“从古至今”的蜕变

两首歌曲非常应景今天分享的内容,我记得大概在1994年左右就有神经网络相关的知识了,并推动了deep learning领域的发展。


LeNet5 的架构基于这样的观点:图像的特征分布在整张图像上,以及带有可学习参数的卷积是一种用少量参数在多个位置上提取相似特征的有效方式。

在那时候,没有 GPU 帮助训练,甚至 CPU 的性能也很低,处理速度很慢。因此,能够保存参数以及计算过程是一个关键进展。这和将每个像素用作一个大型多层神经网络的单独输入相反。

LeNet5 阐述了那些像素不应该被使用在第一层,因为图像具有很强的空间相关性,而用图像中独立的像素作为不同的输入特征则利用不到这些相关性。

LeNet5 特征能够总结为如下几点:

  1. 卷积神经网络使用 3 个层作为一个序列:卷积、池化、非线性 → 这可能是自从这篇 paper 起图像深度学习的关键特征!
  2. 使用卷积提取空间特征
  3. 使用映射到空间均值下采样(subsample)
  4. 双曲正切(tanh)或 S 型(sigmoid)形式的非线性
  5. 多层神经网络(MLP)作为最后的分类器
  6. 层与层之间的稀疏连接矩阵避免大的计算成本

总体来看,这个网络是最近大量架构的起点,并且也给这个领域的许多带来了灵感。


从 1998 年到 2010 年神经网络处于孵化阶段。大多数人没有意识到它们不断增长的力量,与此同时其他研究者则进展缓慢。由于手机相机以及便宜的数字相机的出现,越来越多的数据可被利用。并且计算能力也在成长,CPU 变得更快,GPU 变成了多种用途的计算工具。这些趋势使得神经网络有所进展,虽然速度很慢。数据和计算能力使得神经网络能完成的任务越来越有趣。之后一切变得清晰起来......


Dan Ciresan Net

2010 年的时候,Dan Claudiu Ciresan 和 Jurgen Schmidhuber 发布了最早的 GPU 神经网络的一个实现。这个实现是在一块 NVIDIA GTX 280 图形处理器上运行 9 层的神经网络,包含前向与反向传播。


AlexNet

2012 年,Alex Krizhevsky 发表了 Alexet(参见:ImageNet Classification with Deep Convolutional Neural Networks),它是 LeNet 的一种更深更宽的版本,并以显著优势赢得了困难的 ImageNet 竞赛。

AlexNetLeNet 的思想扩展到了更大的能学习到远远更复杂的对象与对象层次的神经网络上。这项工作的贡献有:

  1. 使用修正的线性单元(ReLU)作为非线性
  2. 在训练的时候使用 Dropout 技术有选择地忽视单个神经元,以避免模型过拟合
  3. 覆盖进行最大池化,避免平均池化的平均化效果
  4. 使用 GPU NVIDIA GTX 580 减少训练时间

在那时,GPU 相比 CPU 可以提供更多数量的核,训练时间可以提升 10 倍,这又反过来允许使用更大的数据集和更大的图像。

AlexNet 的成功掀起了一场小革命。卷积神经网络现在是深度学习的骨干,它已经变成了「现在能解决有用任务的大型神经网络」的代名词。


Overfeat

2013 年的 12 月,纽约大学的 Yann LeCun 实验室提出了 AlexNet 的衍生——Overfeat(参见:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks)。这篇文章也提出了学习边界框(learning bounding box),并导致之后出现了很多研究这同一主题的论文。我相信学习分割对象比学习人工边界框更好。


VGG

来自牛津大学的 VGG 网络(参见:Very Deep Convolutional Networks for Large-Scale Image Recognition)是第一个在各个卷积层使用更小的 3×3 过滤器(filter),并把它们组合作为一个卷积序列进行处理的网络。

这看来和 LeNet 的原理相反,其中是大的卷积被用来获取一张图像中相似特征。和 AlexNet 的 9×9 或 11×11 过滤器不同,过滤器开始变得更小,离 LeNet 竭力所要避免的臭名昭著的 1×1 卷积异常接近——至少在该网络的第一层是这样。但是 VGG 巨大的进展是通过依次采用多个 3×3 卷积,能够模仿出更大的感受野(receptive field)的效果,例如 5×5 与 7×7。这些思想也被用在了最近更多的网络架构中,如 Inception ResNet

VGG 网络使用多个 3×3 卷积层去表征复杂特征。注意 VGG-E 的第 3、4、5 块(block):256×256 和 512×512 个 3×3 过滤器被依次使用多次以提取更多复杂特征以及这些特征的组合。其效果就等于是一个带有 3 个卷积层的大型的 512×512 大分类器。这显然意味着有大量的参数与学习能力。但是这些网络训练很困难,必须划分到较小的网络,并逐层累加。这是因为缺少强大的方式对模型进行正则化,或者或多或少约束大量由于大量参数增长的搜索空间。

VGG 在许多层中都使用大特征尺寸,因为推断(inference)在运行时是相当耗费时间的。正如 Inception 的瓶颈(bottleneck)那样,减少特征的数量将节省一些计算成本。


网络中的网络(Network-in-network)

网络中的网络(NiN,参见论文:Network In Network)的思路简单又伟大:使用 1×1 卷积为卷积层的特征提供更组合性的能力。

NiN 架构在各个卷积之后使用空间 MLP 层,以便更好地在其他层之前组合特征。同样,你可以认为 1×1 卷积与 LeNet 最初的原理相悖,但事实上它们可以以一种更好的方式组合卷积特征,而这是不可能通过简单堆叠更多的卷积特征做到的。这和使用原始像素作为下一层输入是有区别的。其中 1×1 卷积常常被用于在卷积之后的特征映射上对特征进行空间组合,所以它们实际上可以使用非常少的参数,并在这些特征的所有像素上共享!

MLP 的能力能通过将卷积特征组合进更复杂的组(group)来极大地增加单个卷积特征的有效性。这个想法之后被用到一些最近的架构中,例如 ResNetInception 及其衍生技术。

NiN 也使用了平均池化层作为最后分类器的一部分,这是另一种将会变得常见的实践。这是通过在分类之前对网络对多个输入图像的响应进行平均完成的。


GoogLeNet Inception

来自谷歌的 Christian Szegedy 开始追求减少深度神经网络的计算开销,并设计出 GoogLeNet——第一个 Inception 架构(参见:Going Deeper with Convolutions)。

那是在 2014 年秋季,深度学习模型正在变得在图像与视频帧的分类中非常有用。大多数怀疑者已经不再怀疑深度学习与神经网络这一次是真的回来了,而且将一直发展下去。鉴于这些技术的用处,谷歌这样的互联网巨头非常有兴趣在他们的服务器上高效且大规模庞大地部署这些架构。

Christian 考虑了很多关于在深度神经网络达到最高水平的性能(例如在 ImageNet 上)的同时减少其计算开销的方式。或者在能够保证同样的计算开销的前提下对性能有所改进。

他和他的团队提出了 Inception 模块

初看之下这不过基本上是 1×1、3×3、5×5 卷积过滤器的并行组合。但是 Inception 的伟大思路是用 1×1 的卷积块(NiN)在昂贵的并行模块之前减少特征的数量。这一般被称为「瓶颈(bottleneck)」。这部分内容将在下面的「瓶颈层(bottleneck layer)」部分来解释。

GoogLeNet 使用没有 inception 模块的主干作为初始层,之后是与 NiN 相似的一个平均池化层加 softmax 分类器。这个分类器比 AlexNet VGG 的分类器的运算数量少得多。这也促成一项非常有效的网络设计,参见论文:An Analysis of Deep Neural Network Models for Practical Applications。

注:还有Inception V2,Inception V3Inception V4,感兴趣自己可以去了解,很不错!

(有机会可以给大家展示下,不同模型下的参数计算,有兴趣的朋友可以自己私下计算推导,你会发现Inception可以提高几十倍!wow )


ResNet

2015 年 12 月又出现了新的变革,这和 Inception V3 出现的时间一样。ResNet 有着简单的思路:供给两个连续卷积层的输出,并分流(bypassing)输入进入下一层(参见论文:Deep Residual Learning for Image Recognition)。

这和之前的一些旧思路类似。但 ResNet 中,它们分流两个层并被应用于更大的规模。在 2 层后分流是一个关键直觉,因为分流一个层并未给出更多的改进。通过 2 层可能认为是一个小型分类器,或者一个 Network-In-Network。这是第一次网络层数超过一百,甚至还能训练出 1000 层的网络。


SqueezeNet

SqueezeNet(参见论文:SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size)是最近才公布的,该架构是对 ResNet Inception 里面概念的重新处理。一个更好的架构设计网络型号要小,而且参数还不需要复杂的压缩算法。


ENet

我们的团队计划结合近期公开的架构的所有特征,做出一个非常高效、低重的网络,使用较少的参数和计算就能达到顶尖结果。该网络架构被称为 ENet,由 Adam Paszke 设计。我们已经使用它进行过单像素标记和场景解析。

详细了解 ENet 可参见论文 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation。ENet 是一个编码加解码的网络。编码器是一个常规的 CNN 设计进行分类。解码器是一个增采样(upsampling)网络,将分类反向传播给原始图像进行分割。这只使用了神经网络,没有其他算法进行图像分割。

ENet 被设计为在开始时尽可能使用最小数量的资源。正是如此它有着如此小的脚本,编码器和解码器网络共占有 0.7 MB,16 fp 精度。即使这么小的型号,ENet 在分割的准确度上也类似于或者高于其他神经网络解决方案。


本文分享自微信公众号 - 计算机视觉战队(ComputerVisionGzq),作者:Edison_G

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-04-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 卷积神经网络就是这么简单就能学会

    卷积神经网络和前几次介绍的神经网络非常相似:它们都是由神经元组成,神经元中有具有学习能力的权重和偏差。每个神经元都得到一些输入数据,进行内积运算后再进行激活函数...

    计算机视觉研究院
  • 详聊CNN的精髓

    现在的深度学习发展速度已经超出每个人的想象,很大一部分人只是觉得我用他人的框架去实现自己的目的,并且效果很好就可以了,这也是现在一大部分的一个瓶颈。曾经有一个老...

    计算机视觉研究院
  • 详聊CNN的精髓

    现在的深度学习发展速度已经超出每个人的想象,很大一部分人只是觉得我用他人的框架去实现自己的目的,并且效果很好就可以了,这也是现在一大部分的一个瓶颈。曾经有一个老...

    计算机视觉研究院
  • 深度学习系列(二)卷积神经网络模型(从LeNet-5到Inception V4)

    卷积神经网络上目前深度学习应用在图像处理和自然语言处理的非常具有代表性的神经网络,其经历了不断的优化发展,性能越来越强。在图像处理、计算机视觉领域的应用包括图像...

    Minerva
  • 一文带你了解深度神经网络架构发展史

    作者 | Eugenio Culurciello 译者 |叶俊贤 深度神经网络和深度学习算法因为在科研工作与工程任务中都取得了显著的效果从而大受欢迎。而其中取...

    AI科技大本营
  • 【AI 技术精选】神经网络结构深入分析和比较

    作者 | Eugenio Culurciello 翻译 | AI科技大本营(rgznai100) 深度神经网络和深度学习是既强大又受欢迎的算法。这两种算法取得的...

    AI科技大本营
  • 卷积神经网络初探索

    卷积神经网络 当处理图像时,全连接的前馈神经网络会存在以下两个问题: 图像不能太大。比如,输入图像大小为 100 × 100 ×3(即图像高度为 100, 宽度...

    企鹅号小编
  • 深度学习算法原理——栈式自编码神经网络

    注:最近打算将UFLDL教程重新看一遍,其实里面有很多关于神经网络以及深度学习的知识点很有用,但是只是学习深度学习的话有一些内容就有点多余,所以想整理一个笔记,...

    zhaozhiyong
  • 深度学习之 TensorFlow(四):卷积神经网络

    希希里之海
  • 深度学习之 TensorFlow(四):卷积神经网络

    希希里之海

扫码关注云+社区

领取腾讯云代金券