前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据挖掘常用模型构建示例(R语言版)

数据挖掘常用模型构建示例(R语言版)

作者头像
小莹莹
发布2018-04-23 16:12:54
1.3K0
发布2018-04-23 16:12:54
举报

Linear Regression

代码语言:javascript
复制
library(MASS)
lm_fit = lm(medv~poly(rm,2)+crim,data = Boston) # 构建线性模型
summary(lm_fit) # 检查线性模型

Ridge Regreesion and Lasso

代码语言:javascript
复制
# 岭回归与lasso回归跟其他模型不同,不能直接以公式的形式把数据框直接扔进去,也不支持subset;所以数据整理工作要自己做
library(glmnet)
library(ISLR)
Hitters = na.omit(Hitters)
x = model.matrix(Salary~., Hitters)[,-1] # 构建回归设计矩阵
y = Hitters$Salary
ridge.mod = glmnet(x,y,alpha = 0,lambda = 0.1) # 构建岭回归模型
lasso.mod = glmnet(x,y,alpha = 1,lambda = 0.1) # 构建lasso回归模型

Logistic Regression

代码语言:javascript
复制
library(ISLR)
train = Smarket$Year<2005
logistic.fit = glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family=binomial, subset=train) # 构建逻辑回归模型
glm.probs = predict(glm.fit,newdata=Smarket[!train,],type="class")

K-Nearest Neighbor

代码语言:javascript
复制
library(class)
library(ISLR)
standardized.X=scale(Caravan[,-86]) # 先进行变量标准化
test <- 1:1000
train.X <- standardized.X[-test,]
train.Y <- Caravan$Purchase[-test]
test.X <- standardized.X[test,]
test.Y <- Caravan$Purchase[test]
knn.pred <- knn(train.X,test.X,train.Y,k=3) # 直接给出测试集预测结果

Naive Bayse

代码语言:javascript
复制
library(e1071)
classifier<-naiveBayes(iris[,c(1:4)],iris[,5]) # 构建朴素贝叶斯模型
table(predict(classifier,iris[,-5]),iris[,5]) # 应用朴素贝叶斯模型预测

Decision Tree

代码语言:javascript
复制
library(tree)
library(ISLR)
attach(Carseats)
High = ifelse(Sales <= 8 ,"No","Yes")
Carseats = data.frame(Carseats,High)
train = sample(1:nrow(Carseats),200)
Carseats.test = Carseats[-train,]
High.test = High[-train]

tree.carseats = tree(High~.-Sales,Carseats,subset=train) # 建立决策树模型
summary(tree.carseats)
# 可视化决策树
plot(tree.carseats)
text(tree.carseats,pretty = 0)

Random Forest

代码语言:javascript
复制
library(randomForest)
library(MASS)
train = sample(1:nrow(Boston),nrow(Boston)/2)
boston.test = Boston[-train,]
rf.boston = randomForest(medv~.,data = Boston,subset = train,mtry=6,importance=T)
rf.boston
summary(rf.boston)

Boosting

代码语言:javascript
复制
library(gbm)
library(MASS)
train = sample(1:nrow(Boston),nrow(Boston)/2)
boston.test = Boston[-train,]
boost.boston = gbm(medv~.,data = Boston[train,],distribution = "gaussian",n.trees=5000,interaction.depth=4)
boost.boston
summary(boost.boston)

Princpal Content Analysis

代码语言:javascript
复制
library(ISLR)
pr.out = prcomp(USArrests,scale. = T)
pr.out$rotation
biplot(pr.out,scale = 0)

Apriori

代码语言:javascript
复制
library(arules)  #加载arules程序包
data(Groceries)  #调用数据文件
frequentsets=eclat(Groceries,parameter=list(support=0.05,maxlen=10))  #求频繁项集
inspect(frequentsets[1:10])    #察看求得的频繁项集
inspect(sort(frequentsets,by="support")[1:10])    #根据支持度对求得的频繁项集排序并察看(等价于inspect(sort(frequentsets)[1:10])
rules=apriori(Groceries,parameter=list(support=0.01,confidence=0.01))    #求关联规则
summary(rules)    #察看求得的关联规则之摘要
x=subset(rules,subset=rhs%in%"whole milk"&lift>=1.2)    #求所需要的关联规则子集
inspect(sort(x,by="support")[1:5])    #根据支持度对求得的关联规则子集排序并察看

K-means and Hierarchical Clustering

代码语言:javascript
复制
library(ISLR)
nci.labels = NCI60$labs
nci.data = NCI60$data
sd.data = scale(nci.data)
data.dist = dist(sd.data)
# k-means
km.out = kmeans(sd.data,4,nstart = 20)
# Hierarchical Clustering 
hc.out = hclust(dist(sd.data))
plot(hc.out,labels = nci.labels)

Support Vector Machine

代码语言:javascript
复制
library(e1071)
library(ISLR)
dat = data.frame(x = Khan$xtrain,y = as.factor(Khan$ytrain))
out = svm(y~.,data = dat, kernel = "linear", cost = 10)
summary(out)

Artificial Neural Network

代码语言:javascript
复制
library(AMORE)
x1 <- round(runif(2000,1,2000))         #随机生成2000个数x2 <- round(runif(2000,1,2000))         
x11 <- scale(x1[1:1900])                            #数据标准化,并选取1900个组作为学习集x12 <- scale(x2[1:1900])              
x21 <- scale(x1[1901:2000])               #选取100组作为待测集x22 <- scale(x2[1901:2000])
y1 <- x11^2+x12^2y2 <-x21^2+x22^2p <-cbind(x11,x12)                     #整合为矩阵q <-cbind(x21,x22)
target = y1

net<-newff(n.neurons=c(2,2,1),learning.rate.global=1e-2,momentum.global=0.4,error.criterium="LMS", Stao=NA,hidden.layer="tansig",
           output.layer="purelin",method="ADAPTgdwm")
result <- train(net, p, target,error.criterium="LMS", report=TRUE, show.step=100, n.shows=5 )

z <- sim(result$net, q)          #对待测集进行预测plot(q[1:100,1],z, col="blue",pch="+")         #画出待测集模型运算后的图形points(q[1:100,1],y2,col="red", pch="x")     #画出待测集图形,并比较两者之间的差异。

作者:真依然很拉风 链接:http://www.jianshu.com/p/7d32a6a9ca95

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-09-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Linear Regression
  • Ridge Regreesion and Lasso
  • Logistic Regression
  • K-Nearest Neighbor
  • Naive Bayse
  • Decision Tree
  • Random Forest
  • Boosting
  • Princpal Content Analysis
  • Apriori
  • K-means and Hierarchical Clustering
  • Support Vector Machine
  • Artificial Neural Network
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档