Python数据分析和数据挖掘学习路线图

Python是一种面向对象、直译式计算机程序设计语言,由Guido van Rossum于1989年底发明。由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。由于Python语言的简洁、易读以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python教授程序设计课程,并且也广泛用于商业领域。

下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上,十年的时间一直是徐徐上升,最近大数据的兴起,Python作为数据挖掘编程语言备受数据科学家们的青睐。

PYPL——编程语言流行指数。

今天,PPV课Gary老师针对Python在数据分析领域的应用,从数据分析师从业者的角度为大家整理了一份Python数据分析入门学习路线图和相关课程,以供大家学习和参考。课程分为4个模块:

Python语言基础

Python数据挖掘基础

Python文本挖掘基础和实例

Python数据挖掘案例应用

此学习路线由浅入深,从基础到案例实践,手把手教你如何用Python做数据分析和数据挖掘。

python数据分析学习路线图

第一部分是Python基础部分,主要是环境的搭建,库的安装,基础语法的了解,学习时间2周

包括Python开发环境的搭建(使用Anaconda+pycharm,安装该环境包含了上课所需要的所有库,即包含numpy、pandas、scipy、matplotlib、scikit-learn等等,网上搜索Anaconda、pycharm即可获取安装。)基础语法的了解,语言的示例和规范,变量、常量、运算符、表达式相关基础知识。

第二部分是Python数据挖掘的基础,主要是python数据分析相关库的学习和应用,学习时间2周

Python数据挖掘基础主要是对数据分析相关库的使用,比如数据整理需要用到numpy和pandas库,数据描述与分析分析则主要用到pandas库,用Scipy处理非结构化数据,使用回归线性模型和回归树模型进行预测等等用python做数据分析和数据挖掘的库的应用。

第三部分是Python做文本挖掘及案例分析,主要是python爬虫的学习和应用,学习时间2周

数据分析离不开数据采集和爬取。第三部分主要是教如何利用Python进行网络爬虫,以及通过案例学习文本分类和聚类相关知识。学习时间2周

第四部分是Python数据挖掘案例,主要通过讲解案例和动手实践案例,达到知识的融会贯通的应用。学习时间2周

第四部分主要是动手、实践,将上面学习到的理论知识得以应用。第四部分案例覆盖决策树、朴素贝叶斯、最近邻、随机森林、支持向量机、神经网络等重要的数据挖掘方法。拟完成的案例包括不限于以下:使用关联规则进行购物篮分析、垃圾邮件的识别、图像识别、Iris数据挖掘的各种方法比较、电影或者图书推荐系统构建、屏蔽网页内容、街景识别和分类、手写文字的识别、最近邻回归进行预测、降维的各种方法、k-means聚类和中位数聚类等等。含经典编程写算法和scikit-learn等。

最后,除了系统的学习上述相关知识之外,最主要的还是要复习,实践,实践,实践,最后才能真正出师,成为Python数据分析和数据挖掘高手。关于本课程的系统学习,大家可以跟着Gary一起学习《Python数据挖掘实战》课程,系统的学习上述内容,到时候老师会通过直播互动的形式跟大家一起探讨学习。

相关中文资源如下: 1.python工作集成环境包 2.python数据分析相关库(Pandas/Numpy/Scipy/Matplotlib) 如果安装了上面集成工作包,则下面的包不需要重新安装了。关于包的安装方法在学习资源图书中都有介绍,通常安装库采用pip方法,也可以用pip list查询系统安装了哪些库。 3.学习资源 图书: 1)Python基础教程(第2版)[电子版图书自行百度] 2)深入浅出Head First python(中文版)[电子版图书自行百度]

PPV课原创文章,转载请注明出处

1、回复“数据分析师”查看数据分析师系列文章

2、回复“案例”查看大数据案例系列文章

3、回复“征信”查看相关征信的系列文章

4、回复“可视化”查看可视化专题系列文章

5、回复“SPPS”查看SPSS系列文章

6、回复“答案”查看hadoop面试题题目及答案

7、回复“爱情”查看大数据与爱情的故事

8、回复“笑话”查看大数据系列笑话

9、回复“大数据1、大数据2、大数据3、大数据4”查看大数据历史机遇连载

PPV课大数据ID: ppvke123 (长按可复制)

本公众号专注大数据和数据科学领域,分享领域知识和相关技术文章,探索大数据商业价值,培养和挖掘大数据专业人才,欢迎大家关注!

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2016-01-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

【学习】大数据技术学习路线指南:[2]实践原型

大数据的目的在于挖掘价值,而它的本质与OODA循环决策模型非常相似。用OODA这个原型来理解大数据是最合适的了!在战场上,OODA循环决策的周期越短,胜算越大;...

3806
来自专栏EAWorld

【超详解PPT】元数据驱动的微服务架构(上)

? 各位好!很高兴能与大家分享“元数据驱动的微服务架构”。 ? 本次分享有两个部分:1、微服务架构需要元数据,2、介绍微服务与元数据的关系。下期会分享:微服务...

5867
来自专栏AI科技评论

业界 | 百度IDL最新成果:从自然语言入手,教AI智能体像人类一样学习

尽管人工智能取得了巨大的进步,但在许多方面仍然存在局限。例如,在电脑游戏中,如果AI智能体未预先编程游戏规则,则必须尝试数百万次才能确定正确的选择。人类可以在更...

29010
来自专栏机器之心

资源 | GitHub上的五大开源机器学习项目

4257
来自专栏EAWorld

微服务下软件度量系统设计与商业智能技术新发展

? ? 书接上回,在之前发表的文章《在微服务世界度量DevOps,你准备好了吗?》一文中,我们介绍了如何以GRE理论评价DevOps的实施情况,以及度量驱动和...

3606
来自专栏AI研习社

百度IDL最新成果:从自然语言入手,教AI智能体像人类一样学习

尽管人工智能取得了巨大的进步,但在许多方面仍然存在局限。例如,在电脑游戏中,如果AI智能体未预先编程游戏规则,则必须尝试数百万次才能确定正确的选择。人类可以在更...

3136
来自专栏CDA数据分析师

自学机器学习向导

这里,你在学习机器学习的过程中,可以做很多的事情。这里有很多来自书籍和课程的资源给你提供参考,甚至你可以参加比赛和属性使用工具。在这篇文章里,我想对这些活动提供...

2087
来自专栏架构师之路

Google新一代智能验证码

Google新一代智能验证码 图灵测试 来自图灵的论文《计算机与智能》,该测试的内容是:如果计算机能在一定时间内回答由参与测试的人类提出的一系列问题,且其超过3...

4798
来自专栏数据科学与人工智能

【陆勤学习】推荐系统开发的十个关键点

亚马逊的CEO Jeff Bezos曾经说过,他的梦想是“如果我有100万个用户,我就要为他们做100万个亚马逊网站”。智能推荐系统承载的就是这个梦想,即通过数...

46610
来自专栏PPV课数据科学社区

【译】你真的知道数据挖掘的秘密吗?

版权申明 作者:Jason Brownlee 原文链接:http://machinelearningmastery.com/what-is-data-mini...

3016

扫码关注云+社区

领取腾讯云代金券