专栏首页AI科技大本营的专栏葵花宝典之机器学习:全网最重要的AI资源都在这里了(大牛,研究机构,视频,博客,书籍,Quora......)

葵花宝典之机器学习:全网最重要的AI资源都在这里了(大牛,研究机构,视频,博客,书籍,Quora......)

翻译 | AI科技大本营(rgznai100)

参与 | Joe,焦燕

2000年早期,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、 Twitter和播客同样用者甚少。

在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!

为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。

这些资源内容安排如下:知名研究者,研究机构,视频课程,YouTube,博客,媒体作家,书籍,Quora主题栏,Reddit,Github库,播客, 实事通讯媒体、会议、论文。

如果你也有好的资源是这里没有列出的,欢迎评论区一起交流!

研究者

大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。

Sebastian Thrun

个人官网: http://robots.stanford.edu/ Wikipedia: https://en.wikipedia.org/wiki/Sebastian_Thrun Twitter: https://twitter.com/SebastianThrun Google Scholar: https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao Quora: https://www.quora.com/profile/Sebastian-Thrun Reddit AMA: https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/

Yann LeCun

个人官网: http://yann.lecun.com/ Wikipedia: https://en.wikipedia.org/wiki/Sebastian_Thrun Twitter: https://twitter.com/ylecun? Google Scholar: https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en Quora: https://www.quora.com/profile/Yann-LeCun Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

Nando de Freitas

个人官网: http://www.cs.ubc.ca/~nando/ Wikipedia: https://en.wikipedia.org/wiki/Nando_de_Freitas Twitter: https://twitter.com/NandoDF Google Scholar: https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

Andrew Ng

个人官网: http://www.andrewng.org/ Wikipedia: https://en.wikipedia.org/wiki/Andrew_Ng Twitter: https://twitter.com/AndrewYNg Google Scholar: https://scholar.google.com/citations?use Quora: https://www.quora.com/profile/Andrew-Ng" Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

Daphne Koller

个人官网: http://ai.stanford.edu/users/koller/ Wikipedia: https://en.wikipedia.org/wiki/Daphne_Koller Twitter: https://twitter.com/DaphneKoller?lang=en Google Scholar: https://scholar.google.com/citations?user=5Iqe53IAAAAJ Quora: https://www.quora.com/profile/Daphne-Koller Quora Session: https://www.quora.com/session/Daphne-Koller/1

Adam Coates

个人官网: http://cs.stanford.edu/~acoates/ Twitter: https://twitter.com/adampaulcoates Google Scholar: https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en" Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

Jürgen Schmidhuber

个人官网: http://people.idsia.ch/~juergen/ Wikipedia: https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber Google Scholar: https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/

Geoffrey Hinton

个人官网: Wikipedia: https://en.wikipedia.org/wiki/Geoffrey_Hinton Google Scholar: http://www.cs.toronto.edu/~hinton/ Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

Terry Sejnowski

个人官网: http://www.salk.edu/scientist/terrence-sejnowski/ Wikipedia: https://en.wikipedia.org/wiki/Terry_Sejnowski Twitter: https://twitter.com/sejnowski?lang=en Google Scholar: https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en Reddit AMA: https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/

Michael Jordan

个人官网: https://people.eecs.berkeley.edu/~jordan/ Wikipedia: https://en.wikipedia.org/wiki/Michael_I._Jordan Google Scholar: https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en" Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

Peter Norvig

个人官网: http://norvig.com/ Wikipedia: https://en.wikipedia.org/wiki/Peter_Norvig Google Scholar: https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en Reddit AMA: https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/

Yoshua Bengio

个人官网: http://www.iro.umontreal.ca/~bengioy/yoshua_en/ Wikipedia: https://en.wikipedia.org/wiki/Yoshua_Bengio Google Scholar: https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en Quora: https://www.quora.com/profile/Yoshua-Bengio Reddit AMA: http://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/

Ina Goodfellow

个人官网: http://www.iangoodfellow.com/ Wikipedia: https://en.wikipedia.org/wiki/Ian_Goodfellow Twitter: https://twitter.com/goodfellow_ian Google Scholar: https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en Quora: https://www.quora.com/profile/Ian-Goodfellow Quora Session: https://www.quora.com/session/Ian-Goodfellow/1

Andrej Karpathy

个人官网: http://karpathy.github.io/ Twitter: https://twitter.com/karpathy Google Scholar: https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en Quora: https://www.quora.com/profile/Andrej-Karpathy Quora Session: https://www.quora.com/session/Andrej-Karpathy/1

Richard Socher

个人官网: http://www.socher.org/ Twitter: https://twitter.com/RichardSocher Google Scholar: https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en Interview: http://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html

Demis Hassabis

个人官网: http://demishassabis.com/ Wikipedia: https://en.wikipedia.org/wiki/Demis_Hassabis Twitter: https://twitter.com/demishassabis Google Scholar: https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en Interview: https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/

Christopher Manning

个人官网: https://nlp.stanford.edu/~manning/ Twitter: https://twitter.com/chrmanning Google Scholar: https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"

Fei-Fei Li

个人官网: http://vision.stanford.edu/people.html Wikipedia: https://en.wikipedia.org/wiki/Fei-Fei_Li Twitter: https://twitter.com/drfeifei Google Scholar: https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en" Ted Talk: https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/transcript?language=en

François Chollet

个人官网: https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en Twitter: https://twitter.com/fchollet Google Scholar: https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en Quora: https://www.quora.com/profile/Fran%C3%A7ois-Chollet Quora Session: https://www.quora.com/session/Fran%C3%A7ois-Chollet/1

Dan Jurafsky

个人官网: https://web.stanford.edu/~jurafsky/ Wikipedia: https://en.wikipedia.org/wiki/Daniel_Jurafsky Twitter: https://twitter.com/jurafsky Google Scholar: https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en

Oren Etzioni

个人官网: http://allenai.org/team/orene/ Wikipedia: https://en.wikipedia.org/wiki/Oren_Etzioni Twitter: https://twitter.com/etzioni Google Scholar: https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en Quora: https://scholar.google.com/citations?user Reddit AMA: https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/

机构

网络上有大量的知名机构致力于推进人工智能领域的研究和发展。

以下列出的是同时拥有官方网站/博客和推特账号的机构。

OpenAI

官网:https://openai.com/ Twitter:https://twitter.com/OpenAI

DeepMind

官网:https://deepmind.com/ Twitter:https://twitter.com/DeepMindA

Google Research

官网:https://research.googleblog.com/ Twitter:https://twitter.com/googleresearch

AWS AI

官网:https://aws.amazon.com/blogs/ai/ Twitter:https://twitter.com/awscloud

Facebook AI Research

官网:https://research.fb.com/category/facebook-ai-research-fair/

Microsoft Research

官网:https://www.microsoft.com/en-us/research/ Twitter:https://twitter.com/MSFTResearch

Baidu Research

官网:http://research.baidu.com/ Twitter:https://twitter.com/baiduresearch?lang=en

IntelAI

官网:https://software.intel.com/en-us/ai Twitter:https://twitter.com/IntelAI

AI2

官网:http://allenai.org/ Twitter:https://twitter.com/allenai_org

Partnership on AI

官网:https://www.partnershiponai.org/ Twitter:https://twitter.com/partnershipai

视频课程

以下列出的是一些免费的视频课程和教程。

Coursera — Machine Learning (Andrew Ng): https://www.coursera.org/learn/machine-learning#syllabus Coursera — Neural Networks for Machine Learning (Geoffrey Hinton): https://www.coursera.org/learn/neural-networks Udacity — Intro to Machine Learning (Sebastian Thrun): https://classroom.udacity.com/courses/ud120 Udacity — Machine Learning (Georgia Tech): https://www.udacity.com/course/machine-learning--ud262 Udacity — Deep Learning (Vincent Vanhoucke): https://www.udacity.com/course/deep-learning--ud730 Machine Learning (mathematicalmonk): https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas): http://course.fast.ai/start.html Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016) : https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA (class link):http://cs231n.stanford.edu/ Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017) : https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6 (class link):http://web.stanford.edu/class/cs224n/ Oxford Deep NLP 2017 (Phil Blunsom et al.): https://github.com/oxford-cs-deepnlp-2017/lectures Reinforcement Learning (David Silver): http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html Practical Machine Learning Tutorial with Python (sentdex): https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

YouTube

以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:

sentdex (225K subscribers, 21M views): https://www.youtube.com/user/sentdex Artificial Intelligence A.I. (7M views): https://www.youtube.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g Siraj Raval (140K subscribers, 5M views): https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A Two Minute Papers (60K subscribers, 3.3M views): https://www.youtube.com/user/keeroyz DeepLearning.TV (42K subscribers, 1.7M views): https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ Data School (37K subscribers, 1.8M views): https://www.youtube.com/user/dataschool Machine Learning Recipes with Josh Gordon (324K views): https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal Artificial Intelligence — Topic (10K subscribers): https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views): https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ Machine Learning at Berkeley (634 subscribers, 48K views): https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg Understanding Machine Learning — Shai Ben-David (973 subscribers, 43K views): https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q Machine Learning TV (455 subscribers, 11K views): https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw

博客

Andrej Karpathy

博客:http://karpathy.github.io/ Twitter:https://twitter.com/karpathy

i am trask

博客:http://iamtrask.github.io/ Twitter:https://twitter.com/iamtrask

Christopher Olah

博客:http://colah.github.io/ Twitter:https://twitter.com/ch402

Top Bots

博客:http://www.topbots.com/ Twitter:https://twitter.com/topbots

WildML

博客:http://www.wildml.com/ Twitter:https://twitter.com/dennybritz

Distill

博客:http://distill.pub/ Twitter:https://twitter.com/distillpub

Machine Learning Mastery

博客:http://machinelearningmastery.com/blog/ Twitter:https://twitter.com/TeachTheMachine

FastML

博客:http://fastml.com/ Twitter:https://twitter.com/fastml_extra

Adventures in NI

博客:https://joanna-bryson.blogspot.de/ Twitter:https://twitter.com/j2bryson

Sebastian Ruder

博客:http://sebastianruder.com/ Twitter:https://twitter.com/seb_ruder

Unsupervised Methods

博客:http://unsupervisedmethods.com/ Twitter:https://twitter.com/RobbieAllen

Explosion

博客:https://explosion.ai/blog/ Twitter:https://twitter.com/explosion_ai

Tim Dettwers

博客:http://timdettmers.com/ Twitter:https://twitter.com/Tim_Dettmers

When trees fall...

博客:http://blog.wtf.sg/ Twitter:https://twitter.com/tanshawn

ML@B

博客:https://ml.berkeley.edu/blog/ Twitter:https://twitter.com/berkeleyml

媒体作家

以下是一些人工智能领域方向顶尖的媒体作家。

Robbie Allen: https://medium.com/@robbieallen Erik P.M. Vermeulen: https://medium.com/@erikpmvermeulen Frank Chen: https://medium.com/@withfries2 azeem: https://medium.com/@azeem Sam DeBrule: https://medium.com/@samdebrule Derrick Harris: https://medium.com/@derrickharris Yitaek Hwang: https://medium.com/@yitaek samim: https://medium.com/@samim Paul Boutin: https://medium.com/@Paul_Boutin Mariya Yao: https://medium.com/@thinkmariya Rob May: https://medium.com/@robmay Avinash Hindupur: https://medium.com/@hindupuravinash

书籍

以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。

机器学习

Understanding Machine Learning From Theory to Algorithms: http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf Machine Learning Yearning: http://www.mlyearning.org/ A Course in Machine Learning: http://ciml.info/ Machine Learning: https://www.intechopen.com/books/machine_learning Neural Networks and Deep Learning: http://neuralnetworksanddeeplearning.com/ Deep Learning Book: http://www.deeplearningbook.org/ Reinforcement Learning: An Introduction: http://incompleteideas.net/sutton/book/the-book-2nd.html Reinforcement Learning: https://www.intechopen.com/books/reinforcement_learning

自然语言处理

Speech and Language Processing (3rd ed. draft): https://web.stanford.edu/~jurafsky/slp3/ Natural Language Processing with Python: http://www.nltk.org/book/ An Introduction to Information Retrieval: https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

数学

Introduction to Statistical Thought: http://people.math.umass.edu/~lavine/Book/book.pdf Introduction to Bayesian Statistics: https://www.stat.auckland.ac.nz/~brewer/stats331.pdf Introduction to Probability: https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf Think Stats: Probability and Statistics for Python programmers: http://greenteapress.com/wp/think-stats-2e/ The Probability and Statistics Cookbook: http://statistics.zone/ Linear Algebra: http://joshua.smcvt.edu/linearalgebra/book.pdf Linear Algebra Done Wrong: http://www.math.brown.edu/~treil/papers/LADW/book.pdf Linear Algebra, Theory And Applications: https://math.byu.edu/~klkuttle/Linearalgebra.pdf Mathematics for Computer Science: https://courses.csail.mit.edu/6.042/spring17/mcs.pdf Calculus: https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf Calculus I for Computer Science and Statistics Students: http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

Quora

Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。

Computer-Science (5.6M followers): https://www.quora.com/topic/Computer-Science Machine-Learning (1.1M followers): https://www.quora.com/topic/Machine-Learning Artificial-Intelligence (635K followers): https://www.quora.com/topic/Artificial-Intelligence Deep-Learning (167K followers): https://www.quora.com/topic/Deep-Learning Natural-Language-Processing (155K followers): https://www.quora.com/topic/Natural-Language-Processing Classification-machine-learning (119K followers): https://www.quora.com/topic/Classification-machine-learning Artificial-General-Intelligence (82K followers) https://www.quora.com/topic/Artificial-General-Intelligence Convolutional-Neural-Networks-CNNs (25K followers): https://www.quora.com/topic/Artificial-General-Intelligence Computational-Linguistics (23K followers): https://www.quora.com/topic/Computational-Linguistics Recurrent-Neural-Networks (17.4K followers): https://www.quora.com/topic/Recurrent-Neural-Networks

Reddit

Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。

/r/MachineLearning (111K readers): https://www.reddit.com/r/MachineLearning /r/robotics/ (43K readers): https://www.reddit.com/r/robotics/ /r/artificial (35K readers): https://www.reddit.com/r/artificial /r/datascience (34K readers): https://www.reddit.com/r/datascience /r/learnmachinelearning (11K readers): https://www.reddit.com/r/learnmachinelearning /r/computervision (11K readers): https://www.reddit.com/r/computervision /r/MLQuestions (8K readers): https://www.reddit.com/r/MLQuestions /r/LanguageTechnology (7K readers): https://www.reddit.com/r/LanguageTechnology /r/mlclass (4K readers): https://www.reddit.com/r/mlclass /r/mlpapers (4K readers): https://www.reddit.com/r/mlpapers

Github

人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。

Machine Learning (6K repos): https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93 Deep Learning (3K repos): https://github.com/search?q=topic%3Adeep-learning&type=Repositories Tensorflow (2K repos): https://github.com/search?q=topic%3Atensorflow&type=Repositories Neural Network (1K repos): https://github.com/search?q=topic%3Atensorflow&type=Repositories NLP (1K repos): https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories

播客

对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。

ConcerningAI

官网: https://concerning.ai/ iTunes: https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211

This Week in Machine Learning and AI

官网: https://twimlai.com/ iTunes: https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2

The AI Podcast

官网: https://blogs.nvidia.com/ai-podcast/ iTunes: https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811

Data Skeptic

官网: http://dataskeptic.com/ iTunes: https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705

Linear Digressions

官网: https://itunes.apple.com/us/podcast/linear-digressions/id941219323 iTunes: https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2

Partially Dervative

官网: http://partiallyderivative.com/ iTunes: https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2

O'Reilly Data Show

官网: http://radar.oreilly.com/tag/oreilly-data-show-podcast iTunes: https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220

Learning Machines 101

官网: http://www.learningmachines101.com/ iTunes: https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2

The Talking Machines

官网: http://www.thetalkingmachines.com/ iTunes: https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2

Artificial Intelligence in Industry

官网:

http://techemergence.com/ iTunes: https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2

Machine Learning Guide

官网 http://ocdevel.com/podcasts/machine-learning https://itunes.apple...iTunes: https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2

时事通讯媒体

如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。

The Exponential View: https://www.getrevue.co/profile/azeem AI Weekly: http://aiweekly.co/ Deep Hunt: https://deephunt.in/ O’Reilly Artificial Intelligence Newsletter: http://www.oreilly.com/ai/newsletter.html Machine Learning Weekly: http://mlweekly.com/ Data Science Weekly Newsletter: https://www.datascienceweekly.org/ Machine Learnings: http://subscribe.machinelearnings.co/ Artificial Intelligence News: http://aiweekly.co/ When trees fall…: https://meetnucleus.com/p/GVBR82UWhWb9 WildML: https://meetnucleus.com/p/PoZVx95N9RGV Inside AI: https://inside.com/technically-sentient Kurzweil AI: http://www.kurzweilai.net/create-account Import AI: https://jack-clark.net/import-ai/ The Wild Week in AI: https://www.getrevue.co/profile/wildml Deep Learning Weekly: http://www.deeplearningweekly.com/ Data Science Weekly: https://www.datascienceweekly.org/ KDnuggets Newsletter: http://www.kdnuggets.com/news/subscribe.html?qst

会议

随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。

学术会议

NIPS (Neural Information Processing Systems): https://nips.cc/ ICML (International Conference on Machine Learning): https://2017.icml.cc KDD (Knowledge Discovery and Data Mining): http://www.kdd.org/ ICLR (International Conference on Learning Representations): http://www.iclr.cc/ ACL (Association for Computational Linguistics): http://acl2017.org/ EMNLP (Empirical Methods in Natural Language Processing): http://emnlp2017.net/ CVPR (Computer Vision and PatternRecognition): http://cvpr2017.thecvf.com/ ICCF(InternationalConferenceonComputerVision): http://iccv2017.thecvf.com/

专业会议

O’Reilly Artificial Intelligence Conference: https://conferences.oreilly.com/artificial-intelligence/ Machine Learning Conference (MLConf): http://mlconf.com/ AI Expo (North America, Europe, World): https://www.ai-expo.net/ AI Summit: https://theaisummit.com/ AI Conference: https://aiconference.ticketleap.com/helloworld/

论文

arXiv.org上特定领域论文集:

Artificial Intelligence: https://arxiv.org/list/cs.AI/recent Learning (Computer Science): https://arxiv.org/list/cs.LG/recent Machine Learning (Stats): https://arxiv.org/list/stat.ML/recent NLP: https://arxiv.org/list/cs.CL/recent Computer Vision: https://arxiv.org/list/cs.CV/recent

Semantic Scholar搜索结果:

Neural Networks (179K results): https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false Machine Learning (94K results): https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false Natural Language (62K results): https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false Computer Vision (55K results): https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false Deep Learning (24K results): https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false

此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。

http://www.arxiv-sanity.com/

作者:Robbie Allen 原文:https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524

本文分享自微信公众号 - AI科技大本营(rgznai100),作者:收藏党最爱

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-08-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 资源 |​ 史上最全机器学习笔记

    本文由LCatro整理 机器学习 机器学习算法原理 https://github.com/wepe/MachineLearning 机器学习实战原书内容与批注 ...

    AI科技大本营
  • 这三个普通程序员,几个月就成功转型AI,他们的经验是...

    动辄50万的毕业生年薪,动辄100万起步价的海归AI高级人才,普通员到底应不应该转型AI工程师,普通程序员到底应该如何转型AI工程师? 以下,AI科技大本营精选...

    AI科技大本营
  • 资源 |“从蒙圈到入坑”,推荐新一波ML、DL、RL以及数学基础等干货资源

    编译| AI科技大本营(rgznai100) 参与 | suiling 此前营长曾发过一篇高阅读量、高转发率,高收藏量的文章《爆款 | Medium上6900...

    AI科技大本营
  • 那些你可能用得上的在线办公神器系列(三)

    类似的还有 http://www.1ppt.com/ , https://templates.office.com/,http://www.hippter.co...

    苏生不惑
  • 推荐一些数据集

    我们平时经常遇到去哪里下载数据的问题,想必你也为找到想要的数据而颇费周折,我也经常花费不少精力在寻找数据。这几天,特意检索了下,以下所列都可正常打开。

    double
  • 推荐几个对Asp.Net开发者比较实用的工具 2

    推荐几个对Asp.Net开发者比较实用的工具。大家有相关工具也可以在评论区留言,一起努力学习。

    做全栈攻城狮
  • 那些你可能用得上的在线办公神器(二)

    如果想记录工作日志,甚至打造自己的知识管理平台,推荐印象笔记https://www.yinxiang.com,除了笔记还有收藏功能,比如在微信里备份文章,这个在...

    苏生不惑
  • 【干货】前端自学之路(持续更新)

    《JavaScript Dom编程艺术》 《JavaScript面向对象编程指南(基础)》 《JavaScript高级程序设计》 《高性能JavaScri...

    Ewall
  • 笑死人不偿命的知乎沙雕问题排行榜

    作者:徐麟,某互联网公司数据分析狮,个人公众号数据森麟(id:shujusenlin)

    HuangWeiAI
  • 一些有意思的博客

    https://www.bonkersabouttech.com/securityhttps://packetstormsecurity.com/newshtt...

    似水的流年

扫码关注云+社区

领取腾讯云代金券