专栏首页杂七杂八机器学习分类

机器学习分类

机器学习通常分为四类

  • 监督学习
  • 无监督学习
  • 半监督学习
  • 强化学习

监督学习

监督学习是从标记的训练数据来推断一个功能的机器学习任务。在监督学习中,每个实例都是由一个输入对象(通常为矢量)和一个期望的输出值(也称为监督信号)组成。监督学习算法是分析该训练数据,并产生一个推断的功能,其可以用于映射出新的实例。一个最佳的方案将允许该算法来正确地决定那些看不见的实例的类标签。

监督学习

监督学习有两个典型的分类:

  • 分类 比如上面的邮件过滤就是一个二分类问题,分为正例即正常邮件,负例即垃圾邮件。
  • 回归 回归的任务是预测目标数值,比如房屋的价格,给定一组特性(房屋大小、房间数等),来预测房屋的售价。

常见的监督学习算法

  • k-Nearest Neighbors
  • Linear Regression
  • Logistic Regression
  • Support Vector Machines (SVMs)
  • Decision Trees and Random Forests
  • Neural networks

无监督学习

我们有一些问题,但是不知道答案,我们要做的无监督学习就是按照他们的性质把他们自动地分成很多组,每组的问题是具有类似性质的(比如数学问题会聚集在一组,英语问题会聚集在一组,物理........) 所有数据只有特征向量没有标签,但是可以发现这些数据呈现出聚群的结构,本质是一个相似的类型的会聚集在一起。把这些没有标签的数据分成一个一个组合,就是聚类(Clustering)

聚类

常见的无监督学习算法

  • Clustering
    • k-Means
    • Hierarchical Cluster Analysis (HCA)
    • Expectation Maximization
  • Visualization and dimensionality reduction
    • Principal Component Analysis (PCA)
    • Kernel PCA
    • Locally-Linear Embedding (LLE)
    • t-distributed Stochastic Neighbor Embedding (t-SNE)
  • Association rule learning
    • Apriori
    • Eclat

无监督学习算法常见工作

  • 降维 降维的目标是简化数据,但是损失尽量少的信息。一个方法是将几个相似的特征或者代表一个属性的几个特征提取成一个特征,也是我们通常说的特征提取。
  • 异常检测 比如说检测信用卡欺诈,我们用正例来训练模型,然后当一个新的实例到来的时候,判断是否像正实例,否则就是负例。
  • 关联规则 可以参照啤酒喝尿布的例子

半监督

半监督学习在训练阶段结合了大量未标记的数据和少量标签数据。与使用所有标签数据的模型相比,使用训练集的训练模型在训练时可以更为准确,而且训练成本更低。在现实任务中,未标记样本多、有标记样本少是一个比价普遍现象,如何利用好未标记样本来提升模型泛化能力,就是半监督学习研究的重点。要利用未标记样本,需假设未标记样本所揭示的数据分布信息与类别标记存在联系。

强化学习

所谓强化学习就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强 -《百科》 简单来说就是给你一只小白鼠在迷宫里面,目的是找到出口,如果他走出了正确的步子,就会给它正反馈(糖),否则给出负反馈(点击),那么,当它走完所有的道路后。无论比把它放到哪儿,它都能通过以往的学习找到通往出口最正确的道路。强化学习的典型案例就是阿尔法狗。

其他

此外机器学习还有其它的分类方式,比如批量学习和在线学习,也可分为参数学习和非参数学习

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • urllib库python2和python3区别

    urllib库python2和python3区别 在python2中使用的import urllib2——对应的,在python3中使用import urlli...

    听城
  • 神经网络训练细节part2(上)

    在SGD(Stochastic gradient descent)中经常会遇到一个问题,就是梯度在某个方向非常小,在另一个方向有一个很大的速率,这样就会在一个方...

    听城
  • numpy中random模块使用

    在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,下面我们学习一下具体的使用,本文着重说明各个分布随机数的生成。 numpy.rand...

    听城
  • 漫画版:什么是机器学习?

    这段机器学习基础视频[2]将帮助您了解什么是机器学习,机器学习有哪些类型-有监督,无监督和强化学习,如何通过简单的示例学习机器学习以及如何在各个行业中使用机器学...

    用户4131414
  • 谷歌首席科学家:半监督学习的悄然革命

    作为一个机器学习工程师,可能平时最常打交道的就是海量数据了。这些数据只有少部分是有标注的,可以用来进行监督学习。但另外一大部分的数据是没有标注过的。

    新智元
  • [机智的机器在学习]机器学习方法的分类

    今天主要介绍一下机器学习里面的几个基本概念,我刚开始学的时候,比较纠结的几个概念,主要有监督学习,无监督学习,半监督学习, 深度学习, 还有强化学习,强化学习是...

    用户1622570
  • 白话AI

    过去我们用通过编写设定程序来直接让计算机完成某些特定任务,现在,我们还可以训练计算机,就像我们训练宠物一样。这就是用大白话来解释机器学习。当然了,对于一些相对简...

    后端技术探索
  • 【一分钟论文】轻松解读Semi-supervised Sequence Learning半监督序列学习

    一个月前和实验室的伙伴们打了一个跨领域半监督依存句法分析的比赛,比赛成绩出乎意料,在封闭测试下是第一名。这也是我第一次接触半监督学习。最近师兄在写这个评测论文,...

    zenRRan
  • 安静的半监督学习革命,一起清理未标记的数据

    对于机器学习工程师来说,访问大量数据十分重要,但有标记的数据很有限。处于此困境的人可能会查阅文献,思考下一步该做什么,而文献似乎都会给出一个现成的答案:半监督学...

    AiTechYun
  • 【数说学院】机器学习分类大全

    作者 | 冰 · 冰 本文及图的作者是两个人,她们是一个女子博士团体——冰 · 冰 ? 图中整理了机器学习的各种方法,大体分为监督式学习、半监督式学习、无监督式...

    数说君

扫码关注云+社区

领取腾讯云代金券