Python数据挖掘:Kmeans聚类数据分析及Anaconda介绍

糖豆贴心提醒,本文阅读时间8分钟

今天我们来讲一个关于Kmeans聚类的数据分析案例,通过这个案例让大家简单了解大数据分析的基本流程,以及使用Python实现相关的聚类分析。 1.Anaconda软件的安装过程及简单配置 2.聚类及Kmeans算法介绍 3.案例分析:Kmeans实现运动员位置聚集

如果你刚刚接触大数据,相信本文会对你有一些帮助。

一. Anaconda软件安装及使用步骤

我准备使用Anacaonda软件来讲解,它集成了各种Python的第三方包,尤其包括数据挖掘和数据分析常用的几个包。

1. 配置过程

首先简单介绍安装过程以及如何使用。

安装Anaconda

安装过程如下所示:

安装最好在C盘默认路径下(空间不大,方便配置),同时不要使用中文路径。

安装完成后,点击“Finish”。点击Anaconda文件夹,包括这些exe执行文件:

这里我们使用Spyder进行编写Python程序。运行如下所示,左边是进行代码编写的,右下角Console是输出结果的地方。

安装第三方包

虽然Anaconda软件集成了各种各样的包,但是还是缺少一些第三方包,需要通过调用pip或easy_install命令进行安装。

然后使用cd ..去到C盘根目录,cd去到Anaconda的Scripts目录下,输入"pip install selenium"安装selenium相应的包,"pip install lda"安装lda包。

2. 机器学习常用包

下面这四个包通常用于Python数据挖掘和大数据分析的,包括:

Scikit-Learn Scikit-Learn是一个基于python的用于数据挖掘和数据分析的简单且有效的工具,它的基本功能主要被分为六个部分:分类(Classification)、回归(Regression)、聚类(Clustering)、数据降维(Dimensionality Reduction)、模型选择(Model Selection)、数据预处理(Preprocessing)。

NumPy NumPy(Numeric Python)系统是Python的一种开源的数值计算扩展,一个用python实现的科学计算包。它提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。

SciPy SciPy (pronounced "Sigh Pie") 是一个开源的数学、科学和工程计算包。它是一款方便、易于使用、专为科学和工程设计的Python工具包,包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等等。

Matplotlib Matplotlib是一个Python的图形框架,类似于MATLAB和R语言。它是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中

二. 聚类及Kmeans介绍

这部分内容主要简单介绍聚类的原理及Kmeans相关知识。 机器学习的基本思想,我还是介绍下面这张图,非常经典。

1. 分类与聚类

聚类

俗话说“物以类聚”,其实从广义上说,聚类就是将数据集中在某些方面相似的数据成员放在一起。一个聚类就是一些数据实例的集合,其中处于相同聚类中的数据元素彼此相似,但是处于不同聚类中的元素彼此不同。 由于在聚类中那些表示数据类别的分类或分组信息是没有的,即这些数据是没有标签的,所有聚类及时通常被成为无监督学习(Unsupervised Learning)。 下图是800篇文章,每个点可以看成一篇文章,然后对文本进行聚类分析,可以看到相同主题的文章是聚集在一起的。总共四个主题,红色表示景区Spot、蓝色表示人物People、黑色表示国家Country、绿色表示动物Animal。

分类

在理解聚类之前,必须要先理解聚类和分类的区别,简单举个例子。 分类其实是从特定的数据中挖掘模式,作出判断的过程。比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选“垃圾”或“不是垃圾”,过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了。 这是因为在点选的过程中,其实是给每一条邮件打了一个“标签”,这个标签只有两个值,要么是“垃圾”,要么“不是垃圾”,Gmail就会不断研究哪些特点的邮件是垃圾,哪些特点的不是垃圾,形成一些判别的模式,这样当一封信的邮件到来,就可以自动把邮件分到“垃圾”和“不是垃圾”这两个我们人工设定的分类的其中一个。

分类学习主要过程如下:

(1)训练数据集存在一个类标记号,判断它是正向数据集(起积极作用,不垃圾邮件),还是负向数据集(起抑制作用,垃圾邮件)。 (2)然后需要对数据集进行学习训练,并构建一个训练的模型。 (3)通过该模型对预测数据集进预测,并计算其结果的性能。 聚类的的目的也是把数据分类,但是事先我是不知道如何去分的,完全是算法自己来判断各条数据之间的相似性,相似的就放在一起。在聚类的结论出来之前,我完全不知道每一类有什么特点,一定要根据聚类的结果通过人的经验来分析,看看聚成的这一类大概有什么特点。 总之,聚类主要是"物以类聚",通过相似性把相似元素聚集在一起,它没有标签;而分类通过标签来训练得到一个模型,对新数据集进行预测的过程,其数据存在标签的。

2. Kmeans算法

K-Means是聚类算法中的最常用的一种,算法最大的特点是简单,好理解,运算速度快,但是只能应用于连续型的数据,并且一定要在聚类前需要手工指定要分成几类。 面,我们描述一下K-means算法的过程,为了尽量不用数学符号,所以描述的不是很严谨,大概就是这个意思,“物以类聚、人以群分”:

(1)首先输入k的值,即我们希望将数据集经过聚类得到k个分组。 (2)从数据集中随机选择k个数据点作为初始大哥(质心,Centroid) (3)对集合中每一个小弟,计算与每一个大哥的距离(距离的含义后面会讲),离哪个大哥距离近,就跟定哪个大哥。 (4)这时每一个大哥手下都聚集了一票小弟,这时候召开人民代表大会,每一群选出新的大哥(其实是通过算法选出新的质心)。 (5)如果新大哥和老大哥之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,算法终止。 (6)如果新大哥和老大哥距离变化很大,需要迭代3~5步骤。

看下图,前三个点一堆儿,后三个点是另一堆儿。现在手工执行K-Means,体会一下过程,同时看看结果是不是和预期一致。

(1)选择初始大哥:

我们就选P1和P2 (2)计算小弟和大哥的距离:

P3到P1的距离从图上也能看出来(勾股定理),是√10 = 3.16;P3到P2的距离√((3-1)^2+(1-2)^2 = √5 = 2.24,所以P3离P2更近,P3就跟P2混。同理,P4、P5、P6也这么算,如下:

P3到P6都跟P2更近,所以第一次站队的结果是:

• 组A:P1 • 组B:P2、P3、P4、P5、P6 (3)人民代表大会: 组A没啥可选的,大哥还是P1自己 组B有五个人,需要选新大哥,这里要注意选大哥的方法是每个人X坐标的平均值和Y坐标的平均值组成的新的点,为新大哥,也就是说这个大哥是“虚拟的”。 因此,B组选出新大哥的坐标为:P哥((1+3+8+9+10)/5,(2+1+8+10+7)/5)=(6.2,5.6)。 综合两组,新大哥为P1(0,0),P哥(6.2,5.6),而P2-P6重新成为小弟。 (4)再次计算小弟到大哥的距离:

这时可以看到P2、P3离P1更近,P4、P5、P6离P哥更近,第二次站队的结果是:

• 组A:P1、P2、P3 • 组B:P4、P5、P6(虚拟大哥这时候消失) (5)第二届人民代表大会: 按照上一届大会的方法选出两个新的虚拟大哥:P哥1(1.33,1) P哥2(9,8.33),P1-P6都成为小弟。 (6)第三次计算小弟到大哥的距离:

这时可以看到P1、P2、P3离P哥1更近,P4、P5、P6离P哥2更近,所以第二次站队的结果是:

• 组A:P1、P2、P3 • 组B:P4、P5、P6 我们发现,这次站队的结果和上次没有任何变化了,说明已经收敛,聚类结束,聚类结果和我们最开始设想的结果完全一致。

三. 案例分析:Kmeans聚类运动员数据

1. 数据集

现在存在下面的数据集,是篮球球员比赛的数据。 该数据集主要包括5个特征(Features),共96行数据。

特征描述:共5个特征,每分钟助攻数、运动员身高、运动员出场时间、运动员年龄和每分钟得分数。

20行数据集如下:

需求:现在需要通过运动员的数据,判断他是什么位置。 如果某些运动员得分高,他可能是得分后卫;如果某些运动员身高高或篮板多,他可能是中锋;助攻高可能是控卫。

2. 代码

这里我仅仅使用两列数据,助攻数和得分数进行实验,相当于20*2的矩阵,其中输出y_pred结果表示聚类的类标。类簇数设置为3,类标位0、1、2,它也是与20个球员数据一一对应的。 Sklearn机器学习包中导入了KMeans聚类,同时需要注意Matplotlib包绘制图形的过程。代码如下,并包括详细注释:

注意:后面会介绍如何读取数据进行聚类的。 聚类核心代码:

绘图核心代码:

3. 运行结果

运行结果如下所示:

输出图形如下所示:

如果设置marker='o',输出圆形,可以看到红色点很高,他得分和助攻都比较高,相当于篮球里面的"乔丹",然后中间一部分,右下角一部分助攻很高、得分低,可能是控卫。当然数据集越多,聚类的效果越好。

常见问题:

1、安装Anaconda不能使用中文路径,以及电脑名称为中文; 2、Spyder如何显示中文,而不是"口口口"乱码,需要改Fonts; 3、Matplotlib如何显示颜色,定义样式等; 4、如何读取数据,赋值给变量,在让其显示。

希望这篇文章对你有所帮助,主要是介绍一个基于Python的Kmeans聚类案例,后面会陆续详细介绍各种知识。

最后提供篮球的完整数据集:

原文发布于微信公众号 - 马哥Linux运维(magedu-Linux)

原文发表时间:2017-04-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

如何使用sklearn进行数据挖掘?

1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。使用sklearn工具可以方便地进行特征工程和模型训练工作,在...

3976
来自专栏jeremy的技术点滴

tensorflow学习笔记_01

3117
来自专栏PPV课数据科学社区

【学习】SPSS探索分析实践操作

SPSS为我们提供了探索分析,所谓探索分析之所以是探索,是因为有时候我们对于变量的分布特点不是很清楚,探索的目的在于帮助我们完成以下的工作:识别...

3808
来自专栏机器之心

资源 | 让手机神经网络速度翻倍:Facebook开源高性能内核库QNNPACK

为了将最新的计算机视觉模型部署到移动设备中,Facebook 开发了一个用于低密度卷积的优化函数库——QNNPACK,用在最佳神经网络中。

1414
来自专栏iOSDevLog

Python机器学习:Scikit-Learn教程

一个易于理解的scikit-learn教程,可以帮助您开始使用Python机器学习。

5475
来自专栏ATYUN订阅号

验证码,再见!利用机器学习在15分钟内破解验证码

每个人都讨厌验证码——只有输入了那些讨厌的图片上的文本,才能访问网站。验证码的设计是为了防止计算机自动填写表格,验证你是一个真实的“人”。但随着深度学习和计算机...

5065
来自专栏大数据文摘

手把手 | 如何用Python做自动化特征工程

机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理。而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练...

1.4K1

社交图中的社区检测

在进行社交网络分析时,一个常见的问题是如何检测社区,如相互了解或者经常互动的一群人。社区其实就是连通性非常密集的图的子图。

8298
来自专栏机器之心

「史上最强GAN图像生成器」BigGAN的demo出了!

ICLR 2019 大会将在明年 5 月 6 日于美国举行,9 月 27 日论文提交截止后很多论文引起了大家的关注,其中就有一篇 GAN 生成图像的论文。该研究...

2322
来自专栏鸿的学习笔记

一个关于Scikit-Learn的简明介绍:Python机器学习库

如果你是一个Python程序员,或者你正在寻找一个牛逼的库,使你可以应用机器学习到生产系统上,那么你会要认真考虑的库就是scikit-learn。在这篇文章中,...

924

扫码关注云+社区

领取腾讯云代金券