专栏首页北京马哥教育知乎美女挖掘指南--Python实现自动化图片抓取、颜值评分

知乎美女挖掘指南--Python实现自动化图片抓取、颜值评分

声明:文中所有文字、图片以及相关外链中直接或间接、明示或暗示涉及性别、颜值分数等信息全部由相关人脸检测接口给出。无任何客观性,仅供参考。

1 数据源

知乎 话题『美女』下所有问题中回答所出现的图片

2 抓取工具

Python 3,并使用第三方库 Requests、lxml、AipFace,代码共 100 + 行

3 必要环境

Mac / Linux / Windows (Linux 没测过,理论上可以。Windows 之前较多反应出现异常,后查是 windows 对本地文件名中的字符做了限制,已使用正则过滤),无需登录知乎(即无需提供知乎帐号密码),人脸检测服务需要一个百度云帐号(即百度网盘 / 贴吧帐号)

4 人脸检测库

AipFace,由百度云 AI 开放平台提供,是一个可以进行人脸检测的 Python SDK。可以直接通过 HTTP 访问,免费使用

5 检测过滤条件

  • 过滤所有未出现人脸图片(比如风景图、未露脸身材照等)
  • 过滤所有非女性(在抓取中,发现知乎男性图片基本是明星,故不考虑;存在 AipFace 性别识别不准的情况)
  • 过滤所有非真实人物,比如动漫人物 (AipFace Human 置信度小于 0.6)
  • 过滤所有颜值评分较低图片(AipFace beauty 属性小于 45,为了节省存储空间;再次声明,AipFace 评分无任何客观性)

6 实现逻辑

  • 通过 Requests 发起 HTTP 请求,获取『美女』下的部分讨论列表
  • 通过 lxml 解析抓取到的每个讨论中 HTML,获取其中所有的 img 标签相应的 src 属性
  • 通过 Requests 发起 HTTP 请求,下载 src 属性指向图片(不考虑动图)
  • 通过 AipFace 请求对图片进行人脸检测
  • 判断是否检测到人脸,并使用 『4 检测过滤条件』过滤
  • 将过滤后的图片持久化到本地文件系统,文件名为 颜值 + 作者 + 问题名 + 序号
  • 返回第一步,继续

7 抓取结果

直接存放在文件夹中(angelababy 实力出境)。另外说句,目前抓下来的图片,除 baby 外,88 分是最高分。个人对其中的排序表示反对,老婆竟然不是最高分

8 代码

本文代码长达百行,鉴于微信公众号上代码阅读体验实在不佳,小编已将源代码进行保存,请前往微信公众号后台回复关键字「知乎爬虫」获取。

微信后台传送门

9 运行准备

  • 安装 Python 3,Download Python
  • 安装 requests、lxml、baidu-aip 库,都可以通过 pip 安装,一行命令
  • 申请百度云检测服务,免费。人脸识别-百度AI

要求登录,百度帐号可以直接使用(贴吧/网盘通用),没有只能注册

点击创建应用

随便填下

将 AppID ApiKek SecretKey 填写到 代码 中

  • (可选)配置自定义信息,如图片存储目录、颜值阈值、人脸置信度等
  • (可选)若请求知乎失败,返回如下。需更改 AUTHORIZATION,可从开发者工具中获取(如下图)
{
    "error": {
        "message": "ZERR_NO_AUTH_TOKEN",
        "code": 100,
        "name": "AuthenticationInvalidRequest"
    }
}

Chrome 浏览器;找一个知乎链接点进去,打开开发者工具,查看 HTTP 请求 header;无需登录

  • 运行 ^*^

10 结语

  • 因是人脸检测,所以可能有些福利会被筛掉。百度图像识别 API 还有一个叫做色情识别。这个 API 可以识别不可描述以及性感指数程度,可以用这个 API 来找福利(逃
  • 如果实在不想申请百度云服务,可以直接把人脸检测部分注释掉,当做单纯的爬虫使用
  • 人脸检测部分可以替换成其他厂商服务或者本地模型,这里用百度云是因为它不要钱
  • 抓了几千张照片,效果还是挺不错的。有兴趣可以把代码贴下来跑跑试试
  • 这边文章只是基础爬虫 + 数据过滤来获取较高质量数据的示例,希望有兴趣者可以 run 下,代码里有很多地方可以很容易的修改,从最简单的数据源话题变更、抓取数据字段增加和删除到图片过滤条件修改都很容易。如果再稍微花费时间,变更为抓取某人动态(比如轮子哥,数据质量很高)、探索 HTTP 请求中哪些 header 和 query 是必要的,文中代码都只需要非常局部性的修改。至于人脸探测,或者其他机器学习接口,可以提供非常多的功能用于数据过滤,但哪些过滤是具备高可靠性,可信赖的且具备可用性,这个大概是经验和反复试验,这就是额外的话题了;顺便希望大家有良好的编码习惯
  • 最后再次声明,颜值得分以及性别过滤存在 bad case,请勿认真对待

作者:邓卓

来源:https://zhuanlan.zhihu.com/p/34425618

《Python人工智能和全栈开发》2018年07月23日即将在北京开课,120天冲击Python年薪30万,改变速约~~~~

*声明:推送内容及图片来源于网络,部分内容会有所改动,版权归原作者所有,如来源信息有误或侵犯权益,请联系我们删除或授权事宜。

- END -


本文分享自微信公众号 - 马哥Linux运维(magedu-Linux),作者:邓卓

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-03-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Python正则表达式的七个使用范例

    作为一个概念而言,正则表达式对于Python来说并不是独有的。但是,Python中的正则表达式在实际使用过程中还是有一些细小的差别。 本文是一系列关于Pyth...

    小小科
  • 解密 Uber 数据部门的数据可视化最佳实践

    概述 在2015年初,我们在Uber规划了一个官方的数据科学团队。这个主意的缘起是:通过可视化数据探索工具从Uber的数据中发现洞见。每天,Uber 管理上亿级...

    小小科
  • Python 爬虫实践:《战狼2》豆瓣影评分析

    来源:hang segmentfault.com/a/1190000010473819 简介 刚接触python不久,做一个小项目来练练手。前几天看了《战狼2》...

    小小科
  • Python爬取高颜值美女(爬虫+人脸检测+颜值检测)

    Python 3,并使用第三方库 Requests、lxml、AipFace,代码共 100 + 行

    python学习教程
  • 【技术综述】“看透”神经网络

    大家最诟病深度学习的一点就是理论基础不够系统,模型就像一个黑盒子,这就更加凸显了深度学习模型可视化的重要性了。

    用户1508658
  • 分享一份高质量的数据可视化作品指南

    许多数据可视化工作者都提到一件事,就是开发可视化作品变得更简单了,但是效果难以评估。本文翻译自toptal的博文,让我们来看看优秀的可视化实践是如何实现的吧。

    1480
  • Java基础——数据类型

    Java语言提供了八种基本类型。六种数字类型(四个整数型,两个浮点型),一种字符类型,还有一种布尔型。

    羊羽shine
  • 可视化经典:10幅精妙绝伦的科学视图

    来源|译言网 作者|Dave Mosher 译者|Lineker 海量的科学数据可以通过艺术化的科学视图进行呈现,集合与美感相互交融,无序的信息大山化为纸面的五...

    小莹莹
  • 你一定要了解的关于数据可视化常见错误

    有些可视化图形在几十年前就出现了,比如条形图、饼图、散点图等,人们已经习惯通过这些传统的图表阅读数据。

    加米谷大数据
  • 你一定要了解的关于数据可视化常见错误

    有些可视化图形在几十年前就出现了,比如条形图、饼图、散点图等,人们已经习惯通过这些传统的图表阅读数据。

    加米谷大数据

扫码关注云+社区

领取腾讯云代金券