入坑机器学习,你首先得知道这十个知识点...

简单直白地介绍了机器学习的概念、内涵、以及机器学习的相关问题

编者按:本文由微信公众号“将门创投”(ID:thejiangmen)编译,来源:Medium,编译:Tom R。

这篇文章主要面向的是非专业的读者,简单直白地介绍了机器学习的概念、内涵、以及机器学习的相关问题。对于专业人士而言也可以依据这篇文章对机器学习的概念做更深入的理解,看看如何向身边朋友们解释你所从事的工作。

1. 机器学习意味着从数据中学习,而AI呢是一个比较炫酷时髦的词。

机器学习基于这样的假设:我们可以通过将正确的数据放到正确的算法中去训练解决一系列复杂的问题。当你需要融资或者发布产品的时候可以毫不犹豫的称之为人工智能(AI),但是你心里需要明白现在AI是一个几乎可以代表一切时髦用词。

2. 机器学习包括数据和算法,但最主要的部分还是数据。

机器学习算法特别是深度学习近年来取得了极大的成功,但是你需要明白的是数据才是使机器学习成为可能的关键因素。你可以使用简单的算法实现机器学习,但是没有好的数据你将寸步难行。

3. 如果没有大量的数据,那么你还是安心的使用简单的模型吧。

机器学习的任务是从数据中训练出一种模式,探索由参数定义的模型空间。如果你的参数空间太大的话,模型就会在训练数据上出现过拟合,并使得模型失去泛化性。 关于过拟合的详细解释需要很多的数学推到的,但是你需要记住的是,模型越简单越好。

4.机器学习的能力只能到达训练数据所能提供的水平。

“无用输入,无用输出”很好的反映了机器学习的局限性。机器学习只能在提供的训练数据中发现模式,不能够凭空学习出新模式。对于类似分类的监督学习任务来说你需要鲁棒的收集正确标注的特征丰富的数据来作为训练数据。

5.只要训练数据具有代表性的情况下机器学习才会有效。

就像教课书中曾经教会我们的一样“过去的表现并不是未来结果的保障”,机器学习只能在于训练数据同分布的数据上有效。你需要对训练数据和实际数据之间统计上的不对称性保持足够的警觉,同时需要保持模型不断地被训练让它不落伍。

6.机器学习中最复杂的工作来自于数据转换。

在阅读文献的时候你会看到很多眼花缭乱算法,你也许认为机器学习最主要的工作便是选择算法和调节参数。但真实的情况是:机器学习中需要做的最多的工作就是数据清洗和特征工程,你需要将数据的原始特征转换到能更好的表示其中信息的新特征上去。

7. 深度学习是一项革命性的技术,但却不是包治百病的灵丹妙药。

近些年来深度学习被捧上神堂,远远超过了其他的机器学习算法。其中的原因之一就是深度学习可以自动完成传统机器学习算法中需要特征工程才能实现的任务,特别是在图像和声音数据的处理中更是如此。但是我们需要明白深度学习不是万金油,你只能在一定的范围内应用这项技术,同时你也需要在数据清洗和变换上花上很多的精力才行。

8.机器学习极易受到误操作的影响。

“机器学习算法不会杀人,而人类却可能会自掘坟墓”。当机器学习算法失效的时候,很少因为算法本身的的错误,而大多数情况下却是人为的错误造成的。很多情况下你在训练数据中不小心引入了认为错误,或者引入了偏差和其他的系统错误。你需要时刻保持怀疑的态度来使用机器学习算法,并在应用的过程中进行严格的检查。

9.机器学习会在不经意间实现自我预言。

在很多机器学习的应用中,今天的决策会影响未来收集的训练数据。一旦机器算法模型引入了一定的模型偏差,那么它会持续的收集新的数据不断强化这一偏差。事实上有些这样的偏差确实会夺取人宝贵的生命。每一个机器学习从业者都要在心中铭记:不要创造自我实现的预言!

10. AI不会拥有自我意识,也不会崛起摧毁人类的。

令人惊讶的是,在机器学习如此普遍的今天,好多人却依旧用科幻小说和电影中的情节来定义和认识AI。的确,科幻小说可以启发人的创造力,但却不应该如此轻信科幻小说,以致于我们对真实的世界产生误解。今天的世界已经有很多需要我们去关注的危险,从别有用心的邪恶的人到无辜的被滥用的机器。所以请大家不要再去担心“天网”和超级人工智能的出现,而是应该用审慎的心态去看待机器学习,让它更加健康的发展为人类服务。

原文链接:http://www.maiziedu.com/course/373/

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT技术精选文摘

深入浅出之机器学习入门

在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外...

2128
来自专栏Spark学习技巧

27个机器学习的小抄你值得收藏

1084
来自专栏AI科技评论

360 副总裁颜水成教授: 深度学习的研发目标及 1×1 卷积的功能 | CCF-GAIR 2017

7 月 7 日,雷锋网承办的第二届 CCF-GAIR 全球人工智能与机器人峰会在深圳如期开幕。奇虎 360 副总裁、首席科学家、IEEE Fellow、IAPR...

2867
来自专栏机器学习算法与Python学习

资料 | 机器学习数学基础教程【PDF下载】

《机器学习数学基础》由Marc Peter Deisenroth、A Aldo Faisal和Cheng Soon Ong撰写,共381页。这本书并没有涵盖前沿...

5325
来自专栏人工智能头条

神经网络不可思议的声誉

1685
来自专栏计算机视觉战队

视频中的深度学习

视频分级介绍 视频分析是计算机视觉领域中的一项重要研究内容。它借助计算机和视频采集设备,在无人监督的情况下,自动完成人类视觉的部分功能。对人类视觉皮层机理的研...

3976
来自专栏机器之心

业界 | 44篇论文强势进击CVPR 2018,商汤科技的研究员都在做哪些研究?

自 2012 年以来,经过视觉领域诸多学者们的不懈努力,「物体识别」、「人脸检测」等传统任务的性能在一定程度上达到饱和,因此纵观本届 979 篇入选论文,我们会...

1173
来自专栏CSDN技术头条

入坑机器学习,必知必会的十个知识点

这篇文章主要面向的是非专业的读者,简单直白地介绍了机器学习的概念、内涵、以及机器学习的相关问题。对于专业人士而言也可以依据这篇文章对机器学习的概念做更深入的理解...

2297
来自专栏IT派

值得收藏的27个机器学习的小抄

机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超...

1302
来自专栏CDA数据分析师

深入浅出,一篇超棒的机器学习入门文章

? 原文链接:http://www.cnblogs.com/subconscious/p/4107357.html 在本篇文章中,我将对机器学习做个概要的介绍...

2897

扫码关注云+社区

领取腾讯云代金券