数据分析师的能力和工具体系

文章来自天善智能大数据社区 www.hellobi.com 博客专栏 陈丹奕 欢迎更多在大数据、数据分析、数据挖掘和商业智能 BI 领域的一线技术爱好者、咨询顾问、CTO等加入 www.hellobi.com 社区,开启您的个人博客专栏,共同推动大数据行业和技术的进步。

数据分析师的能力体系

如下图所示

数学知识

数学知识是数据分析师的基础知识。

对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。

而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

分析工具

对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。

对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。

对于数据挖掘工程师……嗯,会用用 Excel 就行了,主要工作要靠写代码来解决呢。

编程语言

对于初级数据分析师,会写 SQL 查询,有需要的话写写 Hadoop 和 Hive 查询,基本就OK了。

对于高级数据分析师,除了SQL以外,学习 Python 是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。

对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell 得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。

业务理解

业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。

对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。

对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

逻辑思维

这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。

对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。

对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化

数据可视化说起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚的展示数据,就达到目标了。

对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。

协调沟通

对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。

对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。

快速学习

无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。

以上,就是我对数据分析师能力的总结。

数据分析师的工具体系

一图说明问题

可以从图上看到,Python 在数据分析中的泛用性相当之高,流程中的各个阶段都可以使用Python。所以作为数据分析师的你如果需要学习一门编程语言,那么强力推荐 Python~

原文发布于微信公众号 - 数据的力量(shujudeliliang)

原文发表时间:2016-09-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【数据科学家】9步让你从菜鸟成为数据科学家

由于数据科学和数据分析是个快速发展的领域,当前的合格申请者严重缺乏。这使得数据科学家对于那些有兴趣,并寻找新的职业生涯的人成为有前途的和有利可图的领域。 ? 漫...

2205
来自专栏镁客网

同创国芯窦祥峰演讲实录:VR的FPGA应用分析

1052
来自专栏华章科技

干货 | 从底层到应用,那些数据人的必备技能

目前很火,数据源头,各种炫酷新技术,搭建Hadoop、Hive、Spark、Kylin、Druid、Beam~,前提是你要懂Java,很多平台都是用Java开发...

522
来自专栏大数据挖掘DT机器学习

写给刚入门的数据分析师的几点建议

1.数据是有立场的,立场决定解读 数据对于业务来讲,是KPI的衡量标杆,也是行动指南。但一旦涉及到立场和方向性的东西,必然有利益触发点的问题。比如同样的一次活动...

2986
来自专栏数据科学与人工智能

【数据科学】成为一个数据科学家的九个步骤

数据科学和数据分析发展迅速,给该领域带来了众多工作机,但是可用人才匮乏。这给那些想找新工作的人提供了希望。 ? 但是如何才能成为一个数据科学家呢? 首先,每个...

2296
来自专栏华章科技

干货:数据分析师的能力和工具体系

TA说:之前我在回答里写过,数据分析师和圣骑士职业很相似,都需要“门门通”。最近,我尝试对数据分析师的能力和工具体系进行梳理,以下内容为一家之言,仅供参考。

611
来自专栏挖掘大数据

大数据时代:缺乏能动性的大数据是没有价值的!

不是所有的大数据都是有价值的,大数据只有“动起来”才能体现其价值,否则,很可能是无用的。很多有着海量数据流的公司,虽然有着大把客户资源和现金流,本来是非常适合进...

1886
来自专栏SDNLAB

价值决定高度——边缘计算的应用及价值

物联网是业界积极讨论的话题,大量的企业都计划将智能设备和传感器纳入到物联网的业务模式,因此全球的数据量在逐年增长。边缘计算能够将物联网(IoT)设备产生的数据在...

2695
来自专栏ThoughtWorks

如约而至|2017年3月期技术雷达正式发布!

技术雷达是什么 技术雷达是由 ThoughtWorks 技术战略委员会(TAB)经由多番正式讨论给出的最新技术趋势报告,它以独特的雷达形式对各类最新技术的成熟度...

2583
来自专栏腾讯位置服务

两个字解读“看病中心”北京的就医难

两会代表和全国人民都在关心“就医难”问题,作为国内拥有顶尖医院最多的“看病中心”北京,“就医难”问题更加突出。 腾讯位置大数据带你来解读北京的就医难:哪里难?...

1142

扫码关注云+社区