人工智能学习路线“六小撇步”

1、学习并掌握一些数学知识

高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。

再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路有以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。

2、掌握经典机器学习理论和算法

如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:

1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);

2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);

3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);

4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);

5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;

7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);

8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;

9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);

10)深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);

11)降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS),投影追踪(ProjectionPursuit)等;

12)集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。

3、掌握一种编程工具,比如Python

一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。

4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。

5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。

6、选择自己感兴趣或者工作相关的一个领域深入下去人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的专研下去,这样才能成为人工智能领域的大牛,有所成就。

原文发布于微信公众号 - 机器人网(robot_globalsources)

原文发表时间:2018-07-07

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据派THU

一文读懂机器学习概率图模型(附示例和学习资源)

来源:机器之心 本文长度为10085字,建议阅读15分钟 本文结合基础应用示例系统性的为你讲解概率图模型。 概率图模型是人工智能领域内一大主要研究方向。近日,数...

1.3K9
来自专栏贾志刚-OpenCV学堂

图形图像算法中必须要了解的设计模式(1)

随着信息的多元化,信息的概念不仅仅指的是文字,它还包含图片、声音、视频等其它丰富的信息。文字信息越来越多地被图片、声音、视频信息所替代,而视频又是由一针一针的图...

1303
来自专栏IT派

读懂概率图模型:你需要从基本概念和参数估计开始

概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团队邀请数据科学家 Prasoon Goyal 在其博客上分两部分发表了一篇有关概率图模型的...

4134
来自专栏大数据挖掘DT机器学习

GBDT(MART) 迭代决策树入门及源码解析

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tr...

5316
来自专栏SIGAI学习与实践平台

学好机器学习需要哪些数学知识?

“ 随机过程,实分析。机器学习往深里做肯定需要用这种,高级的数学语言去对问题进行描述。我本人对随机和实分析,其实目前也还只是略懂,很难说,真正的彻底掌握这两门十...

1473
来自专栏AI研习社

神经网络有什么理论支持?

三秒钟理解本文主旨: 问:神经网络有什么理论支持? 答:目前为止(2017 年)没有什么特别靠谱的。 下面是正文。 [本文主要介绍与神经网络相关的理论工作。 个...

4836
来自专栏AI启蒙研究院

【通俗理解】凸优化

1693
来自专栏量子位

一个神经网络学习一切!谷歌又放了个大卫星(附论文)

李林 问耕 编译自 Arxiv 量子位 出品 | 公众号 QbitAI 最近,Google又在论文题目上口出狂言:One Model To Learn The...

40011
来自专栏崔庆才的专栏

干货 | 给妹纸的深度学习教学——从这里出发

或许你第一个想弄明白的问题是人工智能(AI),机器学习(ML),深度学习(DL)三者的区别和联系,下图清晰明了地告诉你。 ? 1. 什么是机器学习 从小学开始...

47111
来自专栏数据科学与人工智能

【陆勤阅读】深度学习、自然语言处理和表征方法

简介 过去几年,深度神经网络在模式识别中占绝对主流。它们在许多计算机视觉任务中完爆之前的顶尖算法。在语音识别上也有这个趋势了。 虽然结果好,我们也必须思考……它...

31010

扫码关注云+社区

领取腾讯云代金券