玩音乐,敲架子鼓,一个被“耽误了”的机器学习高手

多数伏在案前敲击键盘的程序员或许都曾憧憬:黑框眼镜、格子衬衫、脚踩凉拖背后的另一番模样的自己。

对于来自纽约的 Peter Sobot 而言,他的本职工作是通过机器学习系统为 Spotify 平台上的用户推荐音乐。但朝九晚五的工作之余,他还是一名鼓手兼音乐人,这也就意味着他需要经常创作各类电子音乐,当然,包括架子鼓等打击乐器在内。

近日,Peter Sobot 在其博客中写道:“他利用机器学习构建了一款应用程序,无论音频样本是底鼓、军鼓还是其他鼓,其识别准确率高达 87%。”

万万没想到,在工程师的手中,我们可以用机器学习搭建自己的音乐梦想!

需要了解的是,在现代电子音乐制作中,一般都会使用鼓声样片而不是真实的鼓手现场录音的旋律,而这些样片通常以商业性质出售,或者由音乐人免费在网上共享出来。不过,这样的样片却往往很难利用,问题就出在它们的标签和分类方式很难尽如人意。

“每家公司都试图通过创建自己的样片夹专有格式,如 Native Instrument 的 Battery 或 Kontakt 格式。两者都使用元数据,并允许用户通过各种标签浏览样片。但这些软件包非常昂贵,且需要学习其任务流程。” Peter 写道。

于是,这位被音乐耽误了的工程师决定利用机器学习来尝试解决这一问题。

例如,以下给出的一段音频该如何判断究竟是是底鼓、军鼓、踩镲,还是别的音乐样本?

如果是人类,可以毫不费力地区分出这两种声音,但计算机却需要大量的训练。在机器学习中,这通常被称为分类问题,即机器需要注入数据并对其进行分类。在这其中,通常会涉及特征提取阶段。

Peter 指出,人类识别不同的鼓音会从以下几个特征判别:

一是整体文件长度。因为小鼓的声音要比踢鼓的声音持续时间更长,所以比较容易测量。

二是整体响度。实际上,由于电子音乐的大多数样本都是标准化的,这意味着不同样片中的鼓声响度会被调整统一。相反,可以使用“最大”、“中等”、“最小”三种响度以更好地了解响度是如何随时间变化的。

三是频率。如底鼓样片的低频音段会有很多,因其直径长,造成鼓声小而低沉。为了让机器学习算法学会这一点,需要将不同频率范围内的声音响度特征分类。

四是音高。尽管鼓是一款打击乐器,但仍可以调到各种音高。为了量化这种调整,可以采用样本的基频来帮助算法区分低音和高音。

接下来,就开始训练数据了。

据了解,Peter 从数万个样本中选取了大概每种乐器 20~30 个样本量,基本分为以下三种类型:一是每种乐器的不同类型的样本,如声学鼓、电子鼓;二是不同来源的音乐样本;三是非鼓声的音乐样本。

然后,他列出了 100 个样本夹,将大概 50 兆字节的样本数据归置于 5 个单独文件夹中,分别是:底鼓、小鼓、军鼓、踩镲、以及其他。

1、执行特征提取

据了解,这个 Python 库是由音频分析师 Brain McFee 等人创建的 librosa 。

(附上GitHub上的代码链接:https://github.com/psobot/machine-learning-for-drummers)

2、将提取特征保存在JSON文件夹中

3、将特征提供给决策树进行训练

以决策树为例,这是一种常见的机器学习算法,并不涉及“神经网络”、“深度学习”的范畴。简言之,决策树是一种以递归方式学习每个特征的阈值并将数据分类的系统。

Peter 创建了一个决策树模型 classifier.py,其权重由导入的数据通过统计决定。以下为可视化模型:

每个新样本都传递到该决策树中,并对提供的特征进行由上到下的评估。例如,如果新样本为 average_eq_2_10 ≤ -56.77 (如图中的顶部块所示),则决策树将向左移动,然后检查其 fundamental_5 特征。

如果执行 classifier.py ,会呈现两个列表:一是训练准确率(模型预测训练期间出现过的样本的准确率),二是测试准确率(模型预测训练期间未出现过的样本的准确率)。

据了解,Peter 分别获得了 100% 和 87% 的准确率。

在他看来,13% 的错误率可能是过度拟合导致,因此,为了避免出现这种可能性,他采取了以下三种方式:

  1. 调整算法参数以使其不会太具体。
  2. 改变特征计算以便给算法注入更多数据,这部分数据或许对人类来说并不敏感,但在数学上有助于解决分类问题。
  3. 添加更多多样化的数据,以便决策树算法可以创建一种更通用的树,前提是现有数据并不完整。

最后,附上这位小哥哥个人照,

以及博客链接:http://blog.petersobot.com/

原文发布于微信公众号 - AI科技大本营(rgznai100)

原文发表时间:2018-07-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

隐私和机器学习:两个意想不到的盟友?一文了解差分隐私

5331
来自专栏算法channel

TensorFlow笔记|为什么会有它?

本系列推送主要参考: Stanford University CS20SI: Tensorflow for Deep Learning Research. 01...

3806

关于情绪分析项目的10个提议

在我的统计学硕士学位论文项目过程中,我专注于情感分析的问题。情感分析是自然语言处理的一个应用,目的是识别情感(积极的vs消极的vs中性的),主观性(客观的vs主...

2576
来自专栏机器人网

人工智能工程师学习学习路线图

1、度量模型是否成功的各种方法(精确度、召回率、ROC曲线下面积等)。损失函数和评估指标的选择是如何**偏离模型的输出**的。

2933
来自专栏PPV课数据科学社区

机器学习43条军规:解密谷歌机器学习工程最佳实践

本文是对<Rules of Machine Learning: Best Practices for ML Engineering>一文的翻译+解读。看过我翻译...

3665
来自专栏AI研习社

推荐三个 Udacity 无人驾驶纳米项目的感知项目

本文为 AI 研习社编译的技术博客,原标题 Perception Projects from the Self-Driving Car Nanodegree P...

2672
来自专栏MixLab科技+设计实验室

Pix2Pix与人工智能做设计

设计是一个创造的过程,目前大部分的设计类产品大多是基于模版的,外加一些图像匹配的处理,做出来的设计,缺少创造的成分,更多的是预设的结果。 基于深度学习算法,是否...

3384
来自专栏量子位

Mask R-CNN源代码终于来了,还有它背后的物体检测平台

夏乙 编译整理 量子位 出品 | 公众号 QbitAI “等代码吧。” 从Mask R-CNN论文亮相至今的10个月里,关于它的讨论几乎都会以这句话收尾。 ?...

45510
来自专栏IT派

Python作为机器学习语言的老大,跟在它后面的语言都是谁?

Python 由于本身的易用优势和强大的工具库储备,成为了在人工智能及其它相关科学领域中最常用的语言之一。尤其是在机器学习,已然是各大项目最偏爱的语言。

1800
来自专栏机器之心

终结谷歌每小时20美元的AutoML!开源的AutoKeras了解下

Google AI 终于发布了 AutoML 的 beta 版,有人说这项服务将彻底改变深度学习的方式。

1122

扫码关注云+社区

领取腾讯云代金券