前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【技术短文】人脸检测算法之 S3FD

【技术短文】人脸检测算法之 S3FD

作者头像
SIGAI学习与实践平台
发布2018-08-07 11:11:35
3460
发布2018-08-07 11:11:35
举报
文章被收录于专栏:SIGAI学习与实践平台

广而告之

SIGAI-AI学习交流群的目标是为学习者提供一个AI技术交流与分享的平台。

同时在本微信公众号中,回复“SIGAI”+日期,如“SIGAI0515”,即可获取本期文章的全文下载地址(仅供个人学习使用,未经允许,不得用于商业目的)。

SIGAI特约作者

Baoming

算法研究员

导言

自从anchor-based method出现之后,物体检测基本上就离不开这个神奇的anchor了。只因有了它的协助,人类才在检测任务上第一次看到了real time的曙光。但是,夹杂在通用物体检测中,某些特定物体的检测任务由于应用量巨大,以及该物体的特殊性,需要单独拎出来考虑。其中最有代表性的就是人脸检测。

人脸相对于其他物体来说有一个普遍的特点,就是在图像中所占像素少。比如,coco数据集中,有一个分类是“人”,但是人脸在人体中只占很少一部分,在全图像上所占比例就更少了。本文所要介绍的S3FD[1](Single Shot Scale-invariant Face Detector)正是要解决这个问题。

人脸检测专用数据集—widerface

Widerface可以说是目前人脸检测数据集中最难的,放一张图大家感受一下

(图片来自widerface数据集)

图片像素1024*732,平均人脸像素10*13,难度可想而知。(一共标注了132个人脸,吃饱了撑的读者可以数数看)

当然了,这张照片只是展示了人脸的大小引发的问题,还有其他像遮挡,大角度,旋转等问题,由于不是本文的重点,不予过多讨论。

SSD简介

由于该算法是基于SSD来做的改进,首先简单介绍一下SSD[2]。

(图片来自[2])

如图为SSD和YOLO的网络结构,他们也是最早的一批实现了one-stage检测的算法。可以看到,SSD为全卷积网络,并且通过不同位置的layer进行预测。换句话说,用低层网络检测小物体,高层网络检测大物体。

当然了,SSD也有一些明显的问题,比如对于小物体的recall很一般。部分原因是在利用低层网络做预测时,由于网络不够深,不能提取到有效的语义信息。

总之,SSD检测速度可以和YOLO媲美的同时,精度又可以和Faster RCNN媲美,而且很适合作为基础框架进行进一步的改进。

传统anchor机制在小人脸中遇到的问题

(图片来自[1])

本文作者提出了四个问题:

1.人脸区域本身就小,经过几个stride之后,特征图上就不剩什么了

2. 相比于感受野和anchor的尺寸来说,人脸的尺寸小的可怜

3. 对于现有的anchor匹配策略,我们可以看到,人脸像素小于10*10的tiny face基本上一个anchor都匹配不到。而outer face这个问题其实是anchor-based方法的通病,每级anchor间大小差距越大,中间尺寸的mismatch现象就越严重。

4. 图中每一个网格可以看成是某个特定尺寸的anchor。可以看到对于左边的小人脸,正负比例严重失衡,这在训练时,尤其是first layer,需要特别考虑。

本文算法就是为了解决这几个问题。

网络结构

(图片来自[1])

1. 输入大小640*640,从feature map大小为160*160开始,一直到最后5*5,共有6级预测网络,anchor scale从16*16到最后512*512,依次指数加一(看了网络结构强迫症表示很舒服)。

2. 每一个预测层,每个位置anchor只有一个(一个scale,ratio为1:1),因为在不扭曲图片的场景下,人脸的比例大概就是1:1(可能有少部分大长脸比例达到了1:2,但是太少了忽略不计)。因此,预测conv输出的特征维度是2+4=6

3. 在作为预测的最低层的layer(即feature map大小为160*160)下面可以看到预测出来的特征维度为Ns+4,不是2+4,然后跟了一个叫Max-out Background label的东西,这个后面会讲到。

4. 中间的conv_fc6,conv_fc7是从VGG的fc层提取出来然后reshape,作为初始权重。

5. Normalization layers就是SSD_caffe中的Normalize。感兴趣的可以去Github看weiliu89的SSD版本的Caffe代码[2]。

如何解决问题

1. Anchor与anchor之间重叠区域多。比如第一级,stride是4,但是anchor scale是16,所以相邻两个anchor之间有很大一块重叠区域,一定程度上解决了前文提到的outer face的问题。

2. 改进了anchor匹配策略。

如果按照SSD中的匹配策略,jaccard overlap高于阈值(一般取0.5),平均每个人脸只能匹配到3个anchor,而且tiny face和outer face能匹配的anchor数量大部分为0。

作者设计了新的匹配策略:

第一步,将阈值从0.5降到0.35

第二步,对于那些仍然匹配不到anchor的人脸,直接将阈值降到0.1,然后将匹配到的anchor按照jaccard overlap排序,选取top-N个。这个N作者设计为第一步中匹配到anchor的平均值。

再来直观的对比一下新老匹配策略:

(图片来自[1])

可以看到,average line和局部都有所提升。

3. 前面提到,小人脸导致正负样本比例严重失衡。尤其对于最浅层的预测层,一方面anchor本来就多(像本文中的结构,第一级中anchor就占了总数的75%),另一方面由于大部分anchor是背景,导致false positive显著增高。所以为了减少这里的false positive,作者采用了max-out background。

前面我们看到第一级预测出来的特征维度是Ns+4,这里Ns=Nm+1。对于不采用max-out策略的网络层,Nm可以看成是1,即只预测一个该anchor为背景的分数。但是这里取3,可以理解为重复三次预测该anchor为背景的分数,然后取这三个分数中最高的那一个。最直接的结果就是提高了该anchor被预测为背景的概率,因此能够减小false positive。

最后在widerface medium和hard等级上看看本文的成果(测试代码可以在作者提供的github代码中查看[3])

(图片来自[1])

可以看到尤其是hard等级上,本文算法有巨大的提升。

参考文献

[1] Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., & Li, S. Z. (2017, October). S^ 3FD: Single Shot Scale-Invariant Face Detector. In Computer Vision (ICCV), 2017 IEEE International Conference on (pp. 192-201). IEEE.

[2] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham.

[3] https://github.com/weiliu89/caffe

[4] https://github.com/sfzhang15/SFD

本文为SIGAI原创

如需转载,欢迎发消息到本订号

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-07-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 SigAI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人脸识别
腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于在线娱乐、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档