专栏首页华章科技Python扩大领先优势:2018年数据科学语言&工具排名

Python扩大领先优势:2018年数据科学语言&工具排名

导读:近日,著名数据科学网站 KDnuggets 发布了 2018 年数据科学和机器学习工具调查结果。超过 2000 人对自己「过去 12 个月内在项目开发中使用过的数据挖掘/机器学习工具和编程语言」进行了投票。该统计还对过去三年来的排名进行了对比分析。

作者:Gregory Piatetsky

来源:机器之心(ID:almosthuman2014)编译

这份投票结果既有预料之内,也有预料之外的部分。数据显示,Python 作为机器学习常用的编程语言正在不断扩大领先优势,R 语言的使用率第一次降到了 50% 以下。在深度学习框架上,最近呼声很高的深度学习框架 PyTorch 仅仅占据了 6.4% 的使用率,远远落后于 TensorFlow 的 29.9% 和 Keras 的 22.2%。

Python 继续侵蚀着 R 的用户领域,RapidMiner 热门度增加,SQL 保持稳定,TensorFlow 和 Keras 引领前进,Hadoop 衰落,数据科学平台整合等等。

第 19 次年度 KDnuggets 软件调查有超过 2300 人参与投票,略微少于 2017 年,可能是因为仅有一个供应商 RapidMiner 积极地参与 KDnuggests 调查的投票。平均来说,每个参与者选择 7 个使用过的不同工具,因此仅投票一个工具会带来偏差。KDnuggets 排除了大约 260 个这样的「独好」投票(主要来自 RapidMiner),因为即使他们代表了该工具的合法用户,他们的行为也是非典型的,并且会歪曲结果。

以下是基于 2052 个参与者的初始结果分析,其中「独好」投票者已被排除。

谁是最受欢迎的分析、数据科学、机器学习工具?

▲KDnuggests 分析/数据科学 2018 年软件调查:2018 年最受欢迎工具,以及它们相对于 2016-2017 年的排名变化。(为了更有效的比较,KDnuggests 排除了「独好」投票者并重新计算了 2016 年、2017 年的调查结果。)

上图显示了排名前 11 的工具,每个工具的使用率至少为 20%。

▲KDnuggests 2018 年软件调查最受欢迎的分析/数据科学/机器学习软件

在这里,「2018 % share」一栏是指使用该工具的用户百分比,「% change」是指和 2017 年软件调查相比的变化比例,绿色和红色标记表示比例的变化幅度达到了 10% 或更多。

每个投票人的平均使用工具数量是 7 个,略微高于 2017 年调查的 6.75 个(也排除了「独好」投票人)。

和 2017 年的软件调查相比,进入前 11 名的新工具是 Keras。Knime 从第 11 名下跌,可能是因为今年他们并没有积极调动其用户参与投票。

以下是一些观察结果。

1. Python 正在吞噬 R 的用户领域

2017 年 Python 的使用率超过 50%,今年它的使用率上升至 66%,而 R 的使用率首次下跌,跌破 50%。

2. RapidMiner

在之前的几次问卷中,RapidMiner 这一顶级数据科学平台正快速传播,它的用户使用率由 2017 年的 33% 增长到了今年的 52.7%。根据 RapidMiner 的创始人和董事长 Ingo Mierswa,他们采取了一些措施鼓励用户参与该调查。

对于 KDnuggets 的问卷调查,Ingo Mierswa 说:「近两年我们都向用户发送邮件推广该问卷调查,但今年有超过 400 多位用户回邮件表示很高兴能帮助 RapidMiner 的传播。而且今年 RapidMiner 月度活跃用户增长率超出去年 300%,因此我们向更多用户发送了关于 KDnuggets 问卷调查的邮件。我很高兴看到如此活跃的社区。」

3. SQL 保持稳定

作为数据管理系统的程序语言,SQL(包括 Spark SQL 和 SQL to Hadoop 工具)继续保持着约 40% 的使用率,和之前 3 次调查结果一样。因此,如果你是一位有雄心壮志的数据科学家,学习 SQL 吧,它在很长一段时间里都会很有用!

4. 趋势

该调查唯一使用率超过 2% 的新工具是 Spark SQL,使用率达到 11.7%。下表列举了使用率增幅达到 20% 及以上、2018 年使用率为 3% 以上的工具。

▲使用率增幅最大的主要分析/数据科学/机器学习工具

5. 整合

2017 年使用率达到 2% 及以上的 56 个工具中,有 19 个(仅 1/3)工具在 2018 年使用率有所上升,其余 37 个均下降。这和近期的收购案(Datawatch 收购 Angoss、Minitab 收购 Salford)一道表明数据科学平台的整合正在进行过程中。

2017 年使用率至少 3% 的工具,今年下降了 25% 甚至更多,详见下表。

▲使用率跌幅最大的主要分析/数据科学工具

6. 深度学习工具

近两年,该调查中使用深度学习工具的投票者所占份额保持稳定。2018 年有 33% 的投票者使用深度学习工具,2017 年和 2016 年分别有 32% 和 18%。谷歌维护的 TensorFlow 仍然占主导地位,而发展迅速的 Keras 可作为构建在 TensorFlow 和 MXNet 等框架上的高级 API。

另一方面,主要由 Facebook 推动,推出已过一年的 PyTorch 吸引了一批研究者和工程人员,使用率达到 6.4%,排名第三。由于这款深度学习框架已和 Caffe2 合并,在未来我们肯定将会看到 PyTorch 占据更大的份额。

不过 KDnuggets 更关注数据科学,也更常使用浅层的机器学习算法。我们可能更希望了解机器学习及深度学习社区在框架上的选择,因此读者可以在文末对常用的深度学习框架进行投票。

深度学习工具排名:

  • Tensorflow, 29.9%
  • Keras, 22.2%
  • PyTorch, 6.4%
  • Theano, 4.9%
  • Other Deep Learning Tools, 4.9%
  • DeepLearning4J, 3.4%
  • Microsoft Cognitive Toolkit (Prev. CNTK), 3.0%
  • Apache MXnet, 1.5%
  • Caffe, 1.5%
  • Caffe2, 1.2%
  • TFLearn, 1.1%
  • Torch, 1.0%
  • Lasagne, 0.3%

7. 大数据工具:Hadoop 使用率下降

2018 年,大约 33% 的用户使用大数据工具,要么是 Hadoop,要么是 Spark,和 2017 年一样。但 Hadoop 的使用率显著下降,跌幅超过 30%。

以下是相关细节:

8. 编程语言

Python 似乎不仅正在取代 R,还包括除了 SQL、Java、C/C++ 之外的大多数其它语言,这三者与 Python 大致处于同一个级别。自 KDnuggets 开始做这项调查以来,R 使用率首次出现下跌。其它语言也出现了衰落的趋势。

以下是按热门度排序的主要编程语言:

  • Python, 65.6% (was 59.0% in 2017), 11% up
  • R, 48.5% (was 56.6%), 14% down
  • SQL, 39.6% (was 39.2%), 1% up
  • Java, 15.1% (was 15.5%), 3% down
  • Unix, shell/awk/gawk, 9.2% (was 10.8%), 15% down
  • Other programming and data languages, 6.9%, (was 7.6%), -9% down
  • C/C++, 6.8%, (was 7.1%), 3% down
  • Scala, 5.9%, (was 8.3%), 29% down
  • Perl, 1.0% (was 1.9%), 46% down
  • Julia, 0.7% (was 1.2%), 45% down
  • Lisp, 0.3% (was 0.4%), -25% down
  • Clojure, 0.2% (was 0.3%), -38% down
  • F, # 0.1% (was 0.5%), -73% down

9. 地区参与度

本次调查中不同地区的参与比例是:

  • 欧洲,37.5%
  • 美国/加拿大,36.6%
  • 亚洲,11.7%
  • 拉丁美洲,6.6%
  • 非洲/中东,4.5%
  • 澳大利亚/新西兰,3.1%

和 2017 年相比,主要的变化是欧洲的参与比例变高了(之前为 35.5%),而美国/加拿大的参与比例变低了(之前为 41.5%)。

10. 完整结果和 3 年来的趋势

以下表格展示了调查结果的细节(由于篇幅限制,此处仅列出排名前 12 的工具):

更完整的列表请参考原文:

https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning-results.html

本文分享自微信公众号 - 大数据(hzdashuju)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-06-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 漫画科普 | 5G到底是个什么玩意儿?

    导读:几乎是一夜之间,华为、小米、三星等国内外手机厂商纷纷发布新机,不知你看(mai)中(de)了(qi)哪一款?不管哪一款,它们都有一个共同的买点:支持5G。

    华章科技
  • 用 Python分析胡歌的《猎场》到底值不值得看?

    首页总评分评分两级分化严重,“差评”占主 在目前11463个评价中两级分化严重,“1星”占比最高为28.6%,其次为“5星”的25.4%。“好评”(5星、4星)...

    华章科技
  • 如何优雅地测量一只猫的体积?

    把猫装进已知体积为V_box的盒子,在盒子内均匀取N个随机点,其中M个在猫体内,猫体积近似为V_box*M/N。推理及讨论见后面的supplemental ma...

    华章科技
  • 2018年数据科学语言&工具排名,Python完胜R语言

    近日,著名数据科学网站 KDnuggets 发布了 2018 年数据科学和机器学习工具调查结果。超过 2000 人对自己「过去 12 个月内在项目开发中使用过的...

    用户6543014
  • Python扩大领先优势,PyTorch仅占6.4%:2018年数据科学语言&工具排名

    机器之心
  • 盘点那些奇形怪状的编程语言

    有的语言是多面手,在很多不同的领域都能派上用场。这类编程语言叫 general-purpose language,简称 GPL。大家学过的编程语言很多都属于这一...

    Jean
  • 读lodash源码之从slice看稀疏数组与密集数组

    卑鄙是卑鄙者的通行证,高尚是高尚者的墓志铭。 ——北岛《回答》 看北岛就是从这两句诗开始的,高尚者已死,只剩卑鄙者在世间横行。 本文为读 lodash ...

    对角另一面
  • Python编程常见出错信息及原因分析(3)

    (1)不可哈希错误 演示代码: >>> x = {[1], [2]} Traceback (most recent call last): File "<p...

    Python小屋屋主
  • 汇编一个简单的 C 语言程序并分析其汇编指令执行过程

    如果想把 main.c 编译成一个汇编代码,那么可以使用如下命令: gcc –S –o main.s main.c –m32 上述命令产生一个以“.s”作为扩展...

    用户5426759
  • 三个数的和小于等于k

    给一个数组以及一个数K, 从这个数组里面选择三个数,使得三个数的和小于等于K, 有多少种选择的方法?(不包括重复的情况) Example: Input: nu...

    echobingo

扫码关注云+社区

领取腾讯云代金券