斯坦福CS231n Spring 2017开放全部课程视频(附大纲)

来源:机器之心

CS231n近几年一直是计算机视觉领域和深度学习领域最为经典的课程之一。而最近刚刚结课的CS231n Spring 2017 仍由李飞飞主讲,并邀请了Goodfellow等人对其中部分章节详细介绍。本课程从计算机视觉的基础概念开始,在奠定了基本分类模型、神经网络和优化算法的基础后,详细介绍了CNN、RNN、GAN、RL等深度模型在计算机视觉上的应用。前天,斯坦福开放了该课程的全部视频,并且还有配套英文字幕。因此,CS231n 2017 春季课程包括 PPT 和视频在内的所有教学资料都已开放。机器之心将为各位读者介绍该课程,并提供相应的资源,Bilibili视频地址由微博知名博主爱可可老师提供。

  • 课件地址:http://cs231n.stanford.edu/slides/2017/
  • 课程视频地址:https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
  • Bilibili视频地址:http://www.bilibili.com/video/av13260183/#page=1

以下为该课程的内容大纲

Lecture 1:计算机视觉的概述、历史背景以及课程计划

Lecture 2:图像分类——包括数据驱动(data-driven)方法,K 近邻方法(KNN)和线性分类(linear classification)方法

Lecture 3:损失函数和优化(loss Function and optimization)

这一讲主要分为三部分内容:

1. 继续上一讲的内容介绍了线性分类方法;

2. 介绍了高阶表征及图像的特点;

3. 优化及随机梯度下降(SGD)。

Lecture 4:神经网络

包括经典的反向传播算法(back-propagation);多层感知机结构(multilayer perceptrons);以及神经元视角。

Lecture 5:卷积神经网络(CNN)

主要分为三部分内容:

1. 卷积神经网络的历史背景及发展;

2. 卷积与池化(convolution and pooling);

3. ConvNets 的效果

Lecture 6:如何训练神经网络 I

介绍了各类激活函数,数据预处理,权重初始化,分批归一化(batch normalization)以及超参优化(hyper-parameter optimization)。

Lecture 7:如何训练神经网络 II

介绍了优化方法(optimization)、模型集成(model ensembles)、正则化(regularization)、数据扩张(data-augmentation)和迁移学习(transfer learning)。

Lecture 8: 深度学习软件基础

1. 详细对比了 CPU 和 GPU;

2. TensorFlow、Theano、PyTorch、Torch、Caffe 实例的具体说明;

3. 各类框架的对比及用途分析。

Lecture 9:卷积神经网络架构(CNN Architectures)

该课程从 LeNet-5 开始到 AlexNet、VGG、GoogLeNet、ResNet 等由理论到实例详细描述了卷积神经网络的架构与原理。

Lecture 10:循环神经网络(Recurrent Neural Networks)

该课程先详细介绍了 RNN、LSTM 和 GRU 的架构与原理,再从语言建模、图像描述、视觉问答系统等对这些模型进行进一步的描述。

Lecture 11:检测与分割(Detection and Segmentation)

该课程在图像分类的基础上介绍了其他的计算机视觉任务,如语义分割、目标检测和实例分割等,同时还详细介绍了其它如 R-CNN、Fast R-CNN、Mask R-CNN 等架构。

Lecture 12:可视化和理解(Visualizing and Understanding)

该部分不仅讲述了特征可视化和转置,同时还描述了对抗性样本和像 DeepDream 那样的风格迁移系统。

Lecture 13:生成模型(Generative Models)

该章节从 PixelRNN 和 PixelCNN 开始,再到变分自编码器和生成对抗网络详细地讲解了生成模型。

Lecture 14:强化学习(Reinforcement Learning)

该章节先从基本概念解释了什么是强化学习,再解释了马尔可夫决策过程如何形式化强化学习的基本概念。最后对 Q 学习和策略梯度进行了详细的刻画,包括架构、优化策略和训练方案等等。

Lecture 15:深度学习高效的方法和硬件(Efficient Methods and Hardware for Deep Learning)

该章节首先展示了深度学习的三大挑战:即模型规模、训练速度和能源效率。而解决方案可以通过联合设计算法-硬件以提高深度学习效率,构建更高效的推断算法等,

Lecture 16:对抗性样本和对抗性训练(Adversarial Examples and Adversarial Training)

该章节由 Ian Goodfellow 于 5 月 30 日主讲,主要从什么事对抗性样本、对抗性样本产生的原因、如何将对抗性样本应用到企业机器学习系统中、及对抗性样本会如何提升机器学习的性能等方面详细描述对抗性样本和对抗性训练。

END

投稿和反馈请发邮件至hzzy@hzbook.com。转载大数据公众号文章,请向原文作者申请授权,否则产生的任何版权纠纷与大数据无关。

原文发布于微信公众号 - 大数据(hzdashuju)

原文发表时间:2017-08-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏目标检测和深度学习

读完这个你就彻底懂深度学习中的卷积了!

1361
来自专栏量子位

零基础入门神经网络:从原理、主要类型到行业应用

原作 Jay Shah Root 编译自 Jay Shah寄几的博客 量子位 出品 | 公众号 QbitAI 最近,神经网络这个词特别火,吸引不少眼球。但是神经...

3407
来自专栏新智元

【榜单】机器学习&深度学习近三年被引最多论文 Top 20,图像识别、GAN等(附下载)

【新智元导读】 深度学习近年来取得了很多惊人的进展,其中一些重要的研究论文可能会达成让数十亿人使用的技术突破。本文搜集了自2014年来,机器学习和深度学习最重要...

4198
来自专栏钱塘大数据

【 Top 20】机器学习&深度学习近三年论文热门榜单

机器学习,特别是它的子领域深度学习,近年来取得了很多惊人的进展,其中一些重要的研究论文可能会达成让数十亿人使用的技术突破。这个领域的研究发展很快,为了帮助读者了...

5735
来自专栏AI科技评论

大会 | 腾讯AI Lab 21篇CVPR 18录用论文详解

AI 科技评论按:CVPR 2018 日前已公布录用名单,腾讯 AI Lab 共有 21 篇论文入选。本文转载于「腾讯 AI 实验室」, AI 科技评论经授权转...

4255
来自专栏量化投资与机器学习

比较13种算法在165个数据集上的表现,你猜哪个最好?

2775
来自专栏新智元

【谷歌ICML】简单初始化,训练10000层CNN

【新智元导读】如何快速简单地训练神经网络?谷歌大脑研究人员研究了CNN的可训练性,提出了一种简单的初始化策略,不需要使用残差连接或批标准化,就能训练10000层...

640
来自专栏人工智能

宽度学习系统:一种不需要深度结构的高效增量学习系统

本文是对陈俊龙教授团队“Broad Learning System: An Effective and Efficient Incremental Learning ...

5895
来自专栏腾讯技术工程官方号的专栏

CVPR 2018 | 腾讯AI Lab入选21篇论文详解

腾讯AI Lab共有21篇论文入选,位居国内企业前列,我们将在下文进行详解,欢迎交流与讨论。

1.9K18
来自专栏AI科技评论

干货分享 | 深度学习零基础进阶第二弹

图片来自wiki 昨天,雷锋网编译了《干货分享 | 深度学习零基础进阶大法!》,相信读者一定对深度学习的历史有了一个基本了解,其基本的模型架构(CNN/RNN/...

3667

扫码关注云+社区

领取腾讯云代金券