首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow 学前班

TensorFlow 学前班

作者头像
zhuanxu
发布2018-08-23 13:05:17
4480
发布2018-08-23 13:05:17
举报

本文我参加Udacity的深度学习基石课程的学习的第3周总结,主题是在学习 TensorFlow 之前,先自己做一个miniflow,通过本周的学习,对于TensorFlow有了个简单的认识,github上的项目是:https://github.com/zhuanxuhit/nd101 ,欢迎关注的。

我们知道创建一个神经网络的一般步骤是:

  1. normalization
  2. learning hyperparameters
  3. initializing weights
  4. forward propagation
  5. caculate error
  6. backpropagation

而上面步骤在TensorFlow中实现的时候,一般我们的步骤是:

  1. Define the graph of nodes and edges.
  2. Propagate(传播) values through the graph.

接着在我们实现miniflow的时候,我们会先来定义node和graph,然后再来实现 forward propagation 和 backpropagation

1. node

我们先来看node的概念,看个简单的神经网络:

上面的神经网络就是一个大的网络,每个node都有输入和输出,每个node根据输入都会计算出输出,因此我们先来定义node:

class Node(object):
    def __init__(self, inbound_nodes=[]):
        self.inbound_nodes = inbound_nodes
        self.outbound_nodes = []
        for n in self.inbound_nodes:
            n.outbound_nodes.append(self)
        self.value = None    

有了最简单的node,下一步就是来实现 forward propagation。

Forward propagation

为了计算一个node,需要知道它的输入,而输入又依赖于其他节点的输出,这种为了计算当前节点而求其所有前置节点的技术叫拓扑排序topological sort

用图来表示就如下图:

上面为了计算最后的Node F,我们给出了一个可行的计算顺序,我们此处直接给出一个算法:Kahn's Algorithm,代码如下:

def topological_sort(feed_dict):
    input_nodes = [n for n in feed_dict.keys()]

    G = {}
    nodes = [n for n in input_nodes]
    while len(nodes) > 0:
        n = nodes.pop(0)
        if n not in G:
            G[n] = {'in': set(), 'out': set()}
        for m in n.outbound_nodes:
            if m not in G:
                G[m] = {'in': set(), 'out': set()}
            G[n]['out'].add(m)
            G[m]['in'].add(n)
            nodes.append(m)

    L = []
    S = set(input_nodes)
    while len(S) > 0:
        n = S.pop()

        if isinstance(n, Input):
            n.value = feed_dict[n]

        L.append(n)
        for m in n.outbound_nodes:
            G[n]['out'].remove(m)
            G[m]['in'].remove(n)
            # if no other incoming edges add to S
            if len(G[m]['in']) == 0:
                S.add(m)
    return L

def forward_pass(output_node, sorted_nodes):
    for n in sorted_nodes:
        n.forward()

    return output_node.value

下面我们来实现一些简单的Node类型,第一个是Input类型:

class Input(Node):
    def __init__(self):
        Node.__init__(self)

    def forward(self, value=None):
        if value is not None:
            self.value = value

下面是Mul类型:

class Mul(Node):
    def __init__(self, *inputs):
        Node.__init__(self, inputs)

    def forward(self):
        sum = 1.0
        for n in self.inbound_nodes:
            sum *= n.value
        self.value = sum   

具体的用法如下:

x, y, z = Input(), Input(), Input()

f = Mul(x, y, z)

feed_dict = {x: 4, y: 5, z: 10}

graph = topological_sort(feed_dict)
output = forward_pass(f, graph)

# should output 19
print("{} * {} * {} = {} (according to miniflow)".format(feed_dict[x], feed_dict[y], feed_dict[z], output))
4 * 5 * 10 = 200.0 (according to miniflow)

下面我们来实现下稍微复杂点的Node类型:Linear Node

class Linear(Node):
    def __init__(self, inputs, weights, bias):
        Node.__init__(self, [inputs, weights, bias])

    def forward(self):
        inputs = self.inbound_nodes[0].value
        weights = self.inbound_nodes[1].value
        bias = self.inbound_nodes[2].value

        
        sum = 0
        for i in range(len(inputs)):
            sum += inputs[i] * weights[i]
            
        self.value =  sum + bias   

有了LinearNode,我们就可以进行下面的计算了:

inputs, weights, bias = Input(), Input(), Input()

f = Linear(inputs, weights, bias)

feed_dict = {
    inputs: [6, 20, 4],
    weights: [0.5, 0.25, 1.5],
    bias: 2
}

graph = topological_sort(feed_dict)
output = forward_pass(f, graph)

print(output)
16.0

有了LinearNode,我们还可以再定义sigmoidNode。

class Sigmoid(Node):
    def __init__(self, node):
        Node.__init__(self, [node])

    def _sigmoid(self, x):
        return 1. / (1. + np.exp(-x))

    def forward(self):
        input_value = self.inbound_nodes[0].value
        self.value = self._sigmoid(input_value)

定义完node,我们下一步就是来看怎么定义输出好坏的标准了。

2. 定义cost函数

我们在训练神经网络的时候,需要有个目标,就是尽可能的让输出准确,怎么衡量呢?我们可以通过均方误差 (MSE)来衡量,这也可以用一个MSENode来建模

class MSE(Node):
    def __init__(self, y, a):
        Node.__init__(self, [y, a])

    def forward(self):
        y = self.inbound_nodes[0].value.reshape(-1, 1)
        a = self.inbound_nodes[1].value.reshape(-1, 1)
        # TODO: your code here
        m = len(y)
        sum = 0.
        for (yi,ai) in zip(y,a):
            sum += np.square(yi-ai)
        self.value = sum / m

3. 定义反向传播

现在我们有了衡量输出好坏的函数,我们需要的是怎么能快速的让输出尽可能的好,这就要引出Gradient Descent,梯度即slope斜率,我们通过它来定义我们优化的方向,更详细的可以看文章停下来思考下神经网络

有了梯度的概念后,我们来看一个神经网络图:

上面我们为了计算MESE对于w1的梯度,我们沿着图中的红色线走,给出了梯度的计算方式,这种计算方式就是微积分中的链式法则,能让我们计算任意一个变量的梯度,下面我们给出梯度的计算代码,相比较之前的Node中,多了一个backward函数,看下面的实现:

import numpy as np


class Node(object):
    def __init__(self, inbound_nodes=[]):
        self.inbound_nodes = inbound_nodes
        self.value = None
        self.outbound_nodes = []
        self.gradients = {}
        for node in inbound_nodes:
            node.outbound_nodes.append(self)

    def forward(self):
        raise NotImplementedError

    def backward(self):
        raise NotImplementedError


class Input(Node):
    def __init__(self):
        Node.__init__(self)

    def forward(self):        
        pass

    def backward(self):
        self.gradients = {self: 0}
        # 输入节点的梯度等于所有输出的梯度相加
        for n in self.outbound_nodes:
            grad_cost = n.gradients[self]
            self.gradients[self] += grad_cost * 1


class Linear(Node):
    def __init__(self, X, W, b):       
        Node.__init__(self, [X, W, b])

    def forward(self):     
        X = self.inbound_nodes[0].value
        W = self.inbound_nodes[1].value
        b = self.inbound_nodes[2].value
        
        X = self.inbound_nodes[0].value
        W = self.inbound_nodes[1].value
        b = self.inbound_nodes[2].value
        self.value = np.dot(X, W) + b  

    def backward(self):
        self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}
        for n in self.outbound_nodes:
            
            grad_cost = n.gradients[self]
            # y = XW + b
            # 分别计算y相对于每个输入节点的梯度
            # delta_x = w
            self.gradients[self.inbound_nodes[0]] += np.dot(grad_cost, self.inbound_nodes[1].value.T)
            # delta_w = x
            self.gradients[self.inbound_nodes[1]] += np.dot(self.inbound_nodes[0].value.T, grad_cost)
            # delta_b = 1
            self.gradients[self.inbound_nodes[2]] += np.sum(grad_cost, axis=0, keepdims=False)


class Sigmoid(Node):

    def __init__(self, node):
        # The base class constructor.
        Node.__init__(self, [node])

    def _sigmoid(self, x):
        return 1. / (1. + np.exp(-x))

    def forward(self):
        input_value = self.inbound_nodes[0].value
        self.value = self._sigmoid(input_value)

    def backward(self):
        # Initialize the gradients to 0.
        self.gradients = {n: np.zeros_like(n.value) for n in self.inbound_nodes}

     
        for n in self.outbound_nodes:
            # Get the partial of the cost with respect to this node.
            grad_cost = n.gradients[self]
          
            sigmoid = self.value
            self.gradients[self.inbound_nodes[0]] = sigmoid * (1-sigmoid) * grad_cost


class MSE(Node):
    def __init__(self, y, a):
       
        # Call the base class' constructor.
        Node.__init__(self, [y, a])

    def forward(self):
        
        y = self.inbound_nodes[0].value.reshape(-1, 1)
        a = self.inbound_nodes[1].value.reshape(-1, 1)

        self.m = self.inbound_nodes[0].value.shape[0]
       
        self.diff = y - a
        self.value = np.mean(self.diff**2)

    def backward(self):
    
        self.gradients[self.inbound_nodes[0]] = (2 / self.m) * self.diff
        self.gradients[self.inbound_nodes[1]] = (-2 / self.m) * self.diff


def topological_sort(feed_dict):

    input_nodes = [n for n in feed_dict.keys()]

    G = {}
    nodes = [n for n in input_nodes]
    while len(nodes) > 0:
        n = nodes.pop(0)
        if n not in G:
            G[n] = {'in': set(), 'out': set()}
        for m in n.outbound_nodes:
            if m not in G:
                G[m] = {'in': set(), 'out': set()}
            G[n]['out'].add(m)
            G[m]['in'].add(n)
            nodes.append(m)

    L = []
    S = set(input_nodes)
    while len(S) > 0:
        n = S.pop()

        if isinstance(n, Input):
            n.value = feed_dict[n]

        L.append(n)
        for m in n.outbound_nodes:
            G[n]['out'].remove(m)
            G[m]['in'].remove(n)
            # if no other incoming edges add to S
            if len(G[m]['in']) == 0:
                S.add(m)
    return L


def forward_and_backward(graph):
    # Forward pass
    for n in graph:
        n.forward()

    # Backward pass
    # see: https://docs.python.org/2.3/whatsnew/section-slices.html
    for n in graph[::-1]:
        n.backward()

上面定义了所有需要的节点和函数,根据上面我们就可以得出下面的方法了:

X, W, b = Input(), Input(), Input()
y = Input()
f = Linear(X, W, b)
a = Sigmoid(f)
cost = MSE(y, a)

X_ = np.array([[-1., -2.], [-1, -2]])
W_ = np.array([[2.], [3.]])
b_ = np.array([-3.])
y_ = np.array([1, 2])

feed_dict = {
    X: X_,
    y: y_,
    W: W_,
    b: b_,
}

graph = topological_sort(feed_dict)
forward_and_backward(graph)
# return the gradients for each Input
gradients = [t.gradients[t] for t in [X, y, W, b]]

print(gradients)
[array([[ -3.34017280e-05,  -5.01025919e-05],
       [ -6.68040138e-05,  -1.00206021e-04]]), array([[ 0.9999833],
       [ 1.9999833]]), array([[  5.01028709e-05],
       [  1.00205742e-04]]), array([ -5.01028709e-05])]
## 4. 随机梯度下降(Stochastic Gradient Descent)
以前一直没明白SGD是什么,最近才知道。
我们来看如果我们每次对全量数据都计算gradient后再去更新参数,我们可能会出现内存不够的情况,
因此我们的一个策略是:从全量中选出一部分数据,计算这些数据后就更新参数
因此我们就有了下面的代码:
def sgd_update(trainables, learning_rate=1e-2):
    for n in trainables:
        n.value -= learning_rate * n.gradients[n]
        
from sklearn.datasets import load_boston
from sklearn.utils import shuffle, resample

# Load data
data = load_boston()
X_ = data['data']
y_ = data['target']

# Normalize data
X_ = (X_ - np.mean(X_, axis=0)) / np.std(X_, axis=0)

n_features = X_.shape[1]
n_hidden = 10
W1_ = np.random.randn(n_features, n_hidden)
b1_ = np.zeros(n_hidden)
W2_ = np.random.randn(n_hidden, 1)
b2_ = np.zeros(1)

# Neural network
X, y = Input(), Input()
W1, b1 = Input(), Input()
W2, b2 = Input(), Input()

l1 = Linear(X, W1, b1)
s1 = Sigmoid(l1)
l2 = Linear(s1, W2, b2)
cost = MSE(y, l2)

feed_dict = {
    X: X_,
    y: y_,
    W1: W1_,
    b1: b1_,
    W2: W2_,
    b2: b2_
}

epochs = 10
# Total number of examples
m = X_.shape[0]
batch_size = 11
steps_per_epoch = m // batch_size

graph = topological_sort(feed_dict)
trainables = [W1, b1, W2, b2]

print("Total number of examples = {}".format(m))

# Step 4
for i in range(epochs):
    loss = 0
    for j in range(steps_per_epoch):
        # Step 1
        # Randomly sample a batch of examples
        X_batch, y_batch = resample(X_, y_, n_samples=batch_size)

        # Reset value of X and y Inputs
        X.value = X_batch
        y.value = y_batch

        # Step 2
        forward_and_backward(graph)

        # Step 3
        sgd_update(trainables)

        loss += graph[-1].value

    print("Epoch: {}, Loss: {:.3f}".format(i+1, loss/steps_per_epoch))
Total number of examples = 506
Epoch: 1, Loss: 133.910
Epoch: 2, Loss: 36.332
Epoch: 3, Loss: 22.353
Epoch: 4, Loss: 26.704
Epoch: 5, Loss: 23.121
Epoch: 6, Loss: 23.491
Epoch: 7, Loss: 21.393
Epoch: 8, Loss: 15.300
Epoch: 9, Loss: 13.391
Epoch: 10, Loss: 15.651

总结

以上就是我们miniflow的全部了,我们先是定义Node,然后定义Node之间的关系得到图,再通过forward propagation计算输出,通过MES来衡量输出好坏,通过链式法则计算梯度来更新参数让cost不断缩小,最后通过SGD来加快计算。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017.02.13 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. node
  • Forward propagation
  • 2. 定义cost函数
  • 3. 定义反向传播
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档