机器学习深度学习 笔试面试题目整理(2)

题目来源:

  1. 面试笔试整理3:深度学习机器学习面试问题准备(必会)
  2. 深度学习面试题
  3. 深度学习岗位面试题

1. CNN问题:

(1) 思想    改变全连接为局部连接,这是由于图片的特殊性造成的(图像的一部分的统计特性与其他部分是一样的),通过局部连接和参数共享大范围的减少参数值。可以通过使用多个filter来提取图片的不同特征(多卷积核)。  (2)filter尺寸的选择    通常尺寸多为奇数(1,3,5,7) 

(3)输出尺寸计算公式    输出尺寸=(N - F +padding*2)/stride + 1    步长可以自由选择通过补零的方式来实现连接。  (4)pooling池化的作用    虽然通过.卷积的方式可以大范围的减少输出尺寸(特征数),但是依然很难计算而且很容易过拟合,所以依然利用图片的静态特性通过池化的方式进一步减少尺寸。 

(5)常用的几个模型,这个最好能记住模型大致的尺寸参数。见:CNN 常用的几个模型 LeNet5 AlexNet VGGNet Google Inception Net 微软ResNet残差神经网络

名称

特点

LeNet5

–没啥特点-不过是第一个CNN应该要知道

AlexNet

引入了ReLU和dropout,引入数据增强、池化相互之间有覆盖,三个卷积一个最大池化+三个全连接层

VGGNet

采用1*1和3*3的卷积核以及2*2的最大池化使得层数变得更深。常用VGGNet-16和VGGNet19

Google Inception Net 我称为盗梦空间网络

这个在控制了计算量和参数量的同时,获得了比较好的分类性能,和上面相比有几个大的改进:   1、去除了最后的全连接层,而是用一个全局的平均池化来取代它;   2、引入Inception Module,这是一个4个分支结合的结构。所有的分支都用到了1*1的卷积,这是因为1*1性价比很高,可以用很少的参数达到非线性和特征变换。   3、Inception V2第二版将所有的5*5变成2个3*3,而且提出来著名的Batch Normalization;   4、Inception V3第三版就更变态了,把较大的二维卷积拆成了两个较小的一维卷积,加速运算、减少过拟合,同时还更改了Inception Module的结构。

微软ResNet残差神经网络(Residual Neural Network)

1、引入高速公路结构,可以让神经网络变得非常深 2、ResNet第二个版本将ReLU激活函数变成y=x的线性函数

2. RNN问题

1、RNN原理:    在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward+Neural+Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出。所以叫循环神经网络  2、RNN、LSTM、GRU区别

  • RNN引入了循环的概念,但是在实际过程中却出现了初始信息随时间消失的问题,即长期依赖(Long-Term Dependencies)问题,所以引入了LSTM。
  • LSTM:因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸。推导forget gate,input gate,cell state, hidden information等因为LSTM有进有出且当前的cell informaton是通过input gate控制之后叠加的,RNN是叠乘,因此LSTM可以防止梯度消失或者爆炸的变化是关键,下图非常明确适合记忆: 
  • GRU是LSTM的变体,将忘记门和输入们合成了一个单一的更新门。 

3、LSTM防止梯度弥散和爆炸    LSTM用加和的方式取代了乘积,使得很难出现梯度弥散。但是相应的更大的几率会出现梯度爆炸,但是可以通过给梯度加门限解决这一问题。  4、引出word2vec    这个也就是Word Embedding,是一种高效的从原始语料中学习字词空间向量的预测模型。分为CBOW(Continous Bag of Words)和Skip-Gram两种形式。其中CBOW是从原始语句推测目标词汇,而Skip-Gram相反。CBOW可以用于小语料库,Skip-Gram用于大语料库。具体的就不是很会了。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

一文概览主要语义分割网络:FCN,SegNet,U-Net...

图像的语义分割是将输入图像中的每个像素分配一个语义类别,以得到像素化的密集分类。虽然自 2007 年以来,语义分割/场景解析一直是计算机视觉社区的一部分,但与计...

5402
来自专栏决胜机器学习

循环神经网络(一) ——循环神经网络模型与反向传播算法

循环神经网络(一) ——循环神经网络模型与反向传播算法 (原创内容,转载请注明来源,谢谢) 一、概述 这一章开始讲循环神经网络(RNN,Recurrent Ne...

3885
来自专栏PPV课数据科学社区

机器学习系列:(九)从感知器到支持向量机

从感知器到支持向量机 上一章我们介绍了感知器。作为一种二元分类器,感知器不能有效的解决线性不可分问题。其实在第二章,线性回归里面已经遇到过类似的问题,当时需要解...

4399
来自专栏机器之心

你是合格的机器学习数据科学家吗?来挑战这40题吧!(附解答)

选自 Analytics Vidhya 作者:ANKIT GUPTA 机器之心编译 参与:机器之心编辑部 目前机器学习是最抢手的技能之一。如果你是一名数据科学...

3899
来自专栏华章科技

你是合格的机器学习数据科学家吗?来挑战这40题吧!(附解答)

目前机器学习是最抢手的技能之一。如果你是一名数据科学家,那就需要对机器学习很擅长,而不只是三脚猫的功夫。作为 DataFest 2017 的一部分,Analyt...

992
来自专栏大数据挖掘DT机器学习

该怎么检测异常值?

原文作者: Jacob Joseph 原文链接:https://blog.clevertap.com/how-to-detect-outliers-u...

5159
来自专栏数据派THU

开发者必看:超全机器学习术语词汇表!

来源:机器之心 本文长度为12243字,建议阅读8分钟 本文编译自谷歌开发者机器学习术语表项目,介绍了该项目所有的术语与基本解释。 A 准确率(accuracy...

4946
来自专栏专知

概率论之概念解析:极大似然估计

【导读】本文是数据科学家Jonny Brooks-Bartlett概率论基础概念系列博客中的“极大似然估计”一章,主要讲解了极大似然估计的若干概念。分别介绍了参...

3397
来自专栏人工智能

机器学习算法:选择您问题的答案

当我开始涉足数据科学时,我经常面临为如何我的问题选择最合适的算法的问题。如果你像我一样,当你看到一些关于机器学习算法的文章时,你会看到许多详细的描述。但是,即使...

4147
来自专栏计算机视觉战队

CVPR 2018 论文简单笔记 II

该文章主要是在detection当中引入了relation的信息,个人感觉算是个很不错的切入点,而且motivation是源自NLP的,某种方面也说明了知识宽度...

1153

扫码关注云+社区

领取腾讯云代金券