专栏首页程序员的知识天地警告!2019年人工智能的发展,科技大佬为何纷纷站队AI威胁论

警告!2019年人工智能的发展,科技大佬为何纷纷站队AI威胁论

近几年,人工智能步入黄金发展期,舆论风暴更是一波接着一波。“人工智能距离威胁人类还有多远?”“八大现象论证人工智能威胁论真的存在”“AI警告!科技大佬为何纷纷站队AI威胁论”······

但是不管舆论怎样推波,我们都必须面对一个事实“AI真的让我们生活的很好!”,并且它还会持续的“好”。未来的一年,人工智能还会继续发力。

接下来,让我们来深入了解一下新的一年,人工智能的暴风性发展!

1.新技术实现部分任务自动化

2019年,自动化将分阶段进行。虽然距离全面自动化还需一段路程,但许多工作流程和任务都实现了部分自动化。据麦肯锡(McKinsey)统计,基于现有技术, 5%的职业有希望实现完全自动化,60%的职业可以实现30%自动化。

我们已经看到了很多依赖计算机视觉和语音技术的产品和服务,2019年我们会看到更多。语言模型和机器人技术的持续发展,将实现更全面的文本和物理解决方案。竞争将推动企业实施部分自动化解决方案,而自动化项目的成功会推动全面自动化的发展。

2.企业中的人工智能将建立在现有的分析应用程序之上

过去几年,公司致力于构建流程和基础架构来解锁不同的数据源,以便改进关键型任务的分析,包括业务分析、推荐、个性化、预测、异常检测和监控等。

除了使用视觉和语音技术,我们期望深化深度学习,深入到公司拥有的数据和机器学习领域。例如,通过深度学习为时间和地理空间数据注入系统,从而产生可可扩展且更准确的混合系统(即,将深度学习与其他机器学习方法相结合的系统)

3. UX / UI设计将变得至关重要

当前的AI解决方案是消费者、人类工作者和领域内专家携手合作的。这些系统提高了用户的生产力,使他们能够以难以置信的规模和准确度执行任务。丰富的用户体验或用户界面设计不但能简化任务操作,而且能直接提升用户对一项产品的忠实度。

4.硬件将变得更加专业化,用于传感、模型训练和模型推理

深度学习于2011年开始流行,在语音和计算机视觉方面塑造了创世纪的模式。如今,已经有足够的论证证明专业硬件的合理性——仅Facebook每天的预测就达到万亿次。谷歌也有足够的规模证明自己生产的专用硬件的合理性。自去年开始,谷歌一直使用的是张量处理单元(TPU)。因此,2019年,更多的专有硬件将开始出现。中国和美国将有更多的公司基于数据中心和边缘设备开发针对模型构建和推理的硬件。

5.混合模型仍然很重要

虽然深度学习一直在持续发力,但大多数实现端到端解决方案的都是混合系统。2019年,其他组件和方法将会不断浮出水面,包括基于模型的方法,例如贝叶斯推理,树搜索、进化、知识图谱、模拟平台等等。我们可能会看到更多不基于神经网络的机器学习。

6.投资将用于新的工具和流程

我们处于一个高度经验主义的机器学习时代。ML开发工具需要考虑数据、实验和模型搜索以及模型部署和监视的重要性。只需要完成一个步骤:模型创建,公司就可以开始研发数据沿袭、元数据管理和分析、计算资源高效利用、高效模型搜索和超参数调优等工具。2019年,我们期待有新的工具来简化AI和ML在产品和服务上的开发和实际部署。

7.自动化需要安全性的保证

令人振奋的是,研究人员和从业人员都对隐私、公平和道德问题产生了浓厚的兴趣。随着人工智能开始逐渐深入到关键型应用中,自动化的效率提高更需要安全性和可靠性的保证。在线平台的机器欺骗行为的增加,以及最近涉及的自动驾驶汽车的事故,彻底打破了这个问题。2019年,我们期待更深入的讨论安全问题。

8.访问更多的数据有助于利用未产生的数据

由于我们很多的依赖模型(包括深度学习和强化学习)都缺乏数据,因此更容易在人工智能领域取胜的是那些拥有大量数据的大公司和国家。但是,由于生成标记数据集的服务都开始使用机器学习,在一些领域,生成对抗网络(GAN)和仿真平台等新工具能够提供真实的综合数据,用于训练机器学习模型。借助新的安全隐私保护技术,企业可以利用他们自己创建的数据。因此较小的公司可以利用机器学习和人工智能赢得竞争力。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 领导周末喊程序员修错误,程序员霸气回应:在下卖艺不是卖身!

    现在不少员工都被公司要求各种加班,周一至周五晚上加,周末加,办公室加,回家加,有偿加,无偿加......确实让人看见就怕作为一名码农,程序员加班更是家常便饭。

    一墨编程学习
  • 程序员快速学习新技术的技巧

    随着工作年限的增长,经验的不断丰富,我开始寻找下一阶段的个人发展目标。作为一个学习者,在过去的几年里,成果大抵是卓有成效的。可无论是学习还是应用新的技术,都需要...

    一墨编程学习
  • 新浪程序员因加班错失年会77万特等奖,网友:这估计是史上最贵的merge代码了

    某互联网公司在北京召开了2018年的年会,年会现场安排了多项抽奖:有万元现金、苹果产品大礼包、钻戒、出国游机票等,但最让人兴奋的还是特等奖——2000股该公司的...

    一墨编程学习
  • 盘点深度学习一年来在文本、语音和视觉等方向的进展,看强化学习如何无往而不利

    【AI科技大本营导读】AlphaZero自学成才,机器人Atlas苦练后空翻……2017年,人工智能所取得的新进展真是让人应接不暇。而所有的这些进展,都离不开深...

    AI科技大本营
  • 从零基础成为深度学习高手——Ⅰ

    本文共9876字,阅读约需14分钟,有兴趣的朋友请耐心阅读,谢谢! 近期许良在公司内部做了一个关于人工智能/深度学习相关的主题分享讲座,为了准备这个演讲,花了1...

    计算机视觉研究院
  • 【干货指南】机器学习必须需要大量数据?小数据集也能有大价值!

    深度学习往往需要大量数据,不然就会出现过度拟合,本文作者提出了一些在文本数据量不够大的时候可用的一些实用方法,从而赋予小数据集以价值。

    新智元
  • 几千条文本库也能做机器学习!NLP小数据集训练指南

    深度学习往往需要大量数据,不然就会出现过度拟合,本文作者提出了一些在文本数据量不够大的时候可用的一些实用方法,从而赋予小数据集以价值。

    大数据文摘
  • 利用.htaccess绑定子域名到子目录

    Youngxj
  • 深度学习的未来

    2017年7月18日星期二 由弗朗索瓦Chollet 在论文中。

    anthlu
  • 几千条文本库也能做机器学习!NLP小数据集训练指南

    深度学习往往需要大量数据,不然就会出现过度拟合,本文作者提出了一些在文本数据量不够大的时候可用的一些实用方法,从而赋予小数据集以价值。

    CDA数据分析师

扫码关注云+社区

领取腾讯云代金券