前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用scikit-learn进行建模预测和评估操作_泰坦尼克号获救预测

使用scikit-learn进行建模预测和评估操作_泰坦尼克号获救预测

作者头像
统计学家
发布2019-04-10 09:58:15
4200
发布2019-04-10 09:58:15
举报
代码语言:javascript
复制
# coding: utf-8

# In[142]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


# In[143]:

# 导入数据
titanic = pd.read_csv('train.csv')
titanic.head(5)
# print(titanic.describe())


# In[144]:

titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median())
print(titanic.describe())


# In[145]:

print(titanic['Sex'].unique())

# Replace all the occurences of male with the number 0.
# 将字符值转换成 数值
# 进行一个属性值转换
titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0
titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1


# In[146]:

# 登船地址
print(titanic['Embarked'].unique())
titanic['Embarked'] = titanic['Embarked'].fillna('S')
titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0
titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1
titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2


# In[147]:

# Import the linear regression class (线性回归)
from sklearn.linear_model import LinearRegression
# Sklearn also has a helper that makes it easy to do cross validation(交叉验证)
from sklearn.cross_validation import KFold

# The Columns we'll use to predict the target
predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']

# Initialize our algorithm class
alg = LinearRegression()
# Generate(生成) cross validation folds(交叉验证) for the titanic dataset.
# We set random_state to ensure we get the same splits(相同的分割) every time we run this.
kf = KFold(titanic.shape[0], n_folds=3, random_state=1)

# 预测结果
predictions = []
# 训练集, 测试集, 交叉验证
for train, test in kf:
    # The predictors we're using the train the algorithm. 
    # Note how we only take the rows in the train folds (只在训练集中进行)
    train_predictors = (titanic[predictors].iloc[train, :])
    # The target we're using to train the algorithm
    train_target = titanic['Survived'].iloc[train]
    # Training the algorithm using the prodictors and target
    # 训练数据的 X, Y ==> 让他能进行判断的操作
    alg.fit(train_predictors, train_target)
    # we can now make predictions on the test fold
    test_predictions = alg.predict(titanic[predictors].iloc[test, :])
    predictions.append(test_predictions)


# In[148]:

import numpy as np

# The Predictions are in three separate numpy arrays. Concatenate them into one.
# We concatenate them on axis 0, as they only have one axis.我们将它们连接在轴0上,因为它们只有一个轴
predictions = np.concatenate(predictions, axis = 0)

# Map predictions to outcomes (only possible outcome are 1 and 0)
predictions[predictions > 0.5] = 1
predictions[predictions <= .5] = 0

# 进行评估模型
accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions)
print(accuracy)


# In[149]:

from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression

# Initialize our algorithm
alg = LogisticRegression(random_state=1)
# Compute the accuracy score for all the cross validation folds. (计算所有交叉验证折叠的精度分数。)
# (much simpler than what we did before !)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3)
# Take the mean of the scores (because we have one for each fold)
print(scores.mean())


# ### 随机森林

# In[150]:

titanic_test = pd.read_csv('test.csv')
titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median())
titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median())
titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0
titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1
titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S')

titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0
titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1
titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2


# In[151]:

from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier

#选中一些特征 
predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']

# Initialize our algorithm with the default paramters
# random_state = 1 表示此处代码多运行几次得到的随机值都是一样的,如果不设置,两次执行的随机值是不一样的
# n_estimators  指定有多少颗决策树,树的分裂的条件是:
# min_samples_split 代表样本不停的分裂,某一个节点上的样本如果只有2个了 ,就不再继续分裂了
# min_samples_leaf 是控制叶子节点的最小个数
alg = RandomForestClassifier(random_state=1, n_estimators=10, min_samples_split=2, min_samples_leaf=1)

# Compute the accuracy score for all the cross validation folds (nuch simpler than what we did before)
# 进行交叉验证 
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=kf)

# Take the mean of the scores (because we have one for each fold)
print(scores.mean())


# In[152]:

# 建立100多个决策树
alg = RandomForestClassifier(random_state=1, n_estimators=100, min_samples_split=4, min_samples_leaf=2)
# Compute the accuracy score
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=kf)

# Take the mean of the scores (because we have one for each fold)
print(scores.mean())


# ## 关于特征提取问题 (非常关键)
# - 尽可能多的提取特征
# - 看不同特征的效果
# - 特征提取是数据挖掘里很- 要的一部分
# - 以上使用的特征都是数据里已经有的了,在真实的数据挖掘里我们常常没有合适的特征,需要我们自己取提取
# 

# In[153]:

# Generating a familysize column
# 合并数据 :自己生成一个特征,家庭成员的大小:兄弟姐妹+老人孩子
titanic['FamilySize'] = titanic['SibSp'] + titanic['Parch']

# The .apply method generates a new series 名字的长度(据说国外的富裕的家庭都喜欢取很长的名字)
titanic['NameLength'] = titanic['Name'].apply(lambda x: len(x))


# In[154]:

import re

# A function to get the title from a name
def get_title(name):
    # Use a regular expression to search for a title.
    # Titles always consist of capital and lowercase letters.
    title_search = re.search(' ([A-Za-z]+)\.', name)
    # If the title exists extract and return it.
    if title_search:
        return title_search.group(1)
    return ""
# Get all the titles and print how often each one occurs.
titles = titanic['Name'].apply(get_title)
print(pd.value_counts(titles))          # 输出看看, 相同数量的,设置相同映射

# 国外不同阶层的人都有不同的称呼
# Map each title to an integer. Some titles are very rare. and are compressed into the same codes as other
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8, 
                 "Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2 }
for k, v in title_mapping.items():
     #将不同的称呼替换成机器可以计算的数字
    titles[titles == k] = v

# Verify that we converted  everything
print(pd.value_counts(titles))

# Add in the title column
titanic['Title'] = titles


# In[155]:

# 进行特征选择
# 特征重要性分析
# 分析 不同特征对 最终结果的影响
# 例如 衡量age列的重要程度时,什么也不干,得到一个错误率error1,
# 加入一些噪音数据,替换原来的值(注意,此时其他列的数据不变),又得到一个一个错误率error2
# 两个错误率的差值 可以体现这一个特征的重要性
import numpy as np
from sklearn.feature_selection import SelectKBest, f_classif
import matplotlib.pylab as plt

# 选中一些特征
predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', "Embarked",
             'FamilySize', 'Title', 'NameLength']

# Perform feature selection 选择特性
selector = SelectKBest(f_classif, k = 5)
selector.fit(titanic[predictors], titanic['Survived'])

# Get the raw p-values(P 值) for each feature, and transform from p-values into scores
scores = -np.log10(selector.pvalues_)

# Plot the scores. See how "Plcass", "Sex", "Title", and "Fare" are the best ?
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation='vertical')
plt.show()

# 通过以上的特征重要性分析, 选择出4个最重要的特性,重新进行随机森林的算法
# Pick only the four best features.
predictors = ['Pclass', 'Sex', 'Fare', 'Title']

alg = RandomForestClassifier(random_state=1, n_estimators=50, min_samples_split=8, min_samples_leaf=4)

# 进行交叉验证
kf = cross_validation.KFold(titanic.shape[0], n_folds=3, random_state=1)
scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic["Survived"],cv=kf)
#目前的结果是没有得到提高,本处的目的是为了练习在随机森林中的特征选择,它对于实际的数据挖掘具有重要意义
print (scores.mean())


# ### 集成多种算法(减少过拟合)

# In[156]:

# 在竞赛中常用的耍赖的办法:集成多种算法,取最后每种算法的平均值,来减少过拟合
from sklearn.ensemble import GradientBoostingClassifier
import numpy as np

# GradientBoostingClassifier也是一种随机森林的算法,可以集成多个弱分类器,然后变成强分类器
# The algorithm we want to ensemble
# We're using the more linear predictors for the logistic regression
# and everything with the gradient boosting
algorithms = [
    [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3),["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]],
    [LogisticRegression(random_state=1), ["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]]
]

# Initialize the cross validation folds
kf = KFold(titanic.shape[0], n_folds=3, random_state=1)

predictions = []
for train, test in kf:
    train_target = titanic['Survived'].iloc[train]
    full_test_predictions = []
    # Make predictions for each algorithm on each folds
    for alg, predictors in algorithms:
        # Fit the algorithm on the training data.
        alg.fit(titanic[predictors].iloc[train, :], train_target)
        # Select and predict on the test fold.
        # The astype(float) is necessary to convert the dataframe
        test_predictions = alg.predict_proba(titanic[predictors].iloc[test, :].astype(float))[:, 1]
        full_test_predictions.append(test_predictions)
    # Use a simple ensembling scheme - just average the predictions to get the final classification
    # 两个算法, 分别算出来的 预测值, 取平均
    test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2
    # Any value over 5 is assumed to be a 1 prediction, and below 5 is a 0 prediction
    test_predictions[test_predictions <= 0.5] = 0
    test_predictions[test_predictions > .5] = 1
    predictions.append(test_predictions)

# Put all the predictions together into one array
predictions = np.concatenate(predictions, axis=0)

accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) 
print(accuracy)


# In[157]:

titles = titanic['Name'].apply(get_title)
print(pd.value_counts(titles))          # 输出看看, 相同数量的,设置相同映射

# 国外不同阶层的人都有不同的称呼
# Map each title to an integer. Some titles are very rare. and are compressed into the same codes as other
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, "Mlle": 8, 
                 "Mme": 8, "Don": 9, "Lady": 10, "Countess": 10, "Jonkheer": 10, "Sir": 9, "Capt": 7, "Ms": 2 }
for k, v in title_mapping.items():
     #将不同的称呼替换成机器可以计算的数字
    titles[titles == k] = v
# Add in the title column
titanic_test['Title'] = titles
print(pd.value_counts(titanic_test['Title']))

# Now, we add the family size column.
titanic_test['FamilySize'] = titanic_test['SibSp'] + titanic_test['Parch']


# In[158]:

predictors = ["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]

algorithms = [
    [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), predictors],
    [LogisticRegression(random_state=1), ["Pclass","Sex","Age","Fare","Embarked","FamilySize","Title"]]
]

full_predictions = []
for alg, predictors in algorithms:
    # Fit the Algorithm using the full training data
    alg.fit(titanic[predictors], titanic['Survived'])
    predictions = alg.predict_proba(titanic_test[predictors].astype(float))[:, 1]
    full_predictions.append(predictions)

# 梯度提升分类器产生更好的预测
# The gradient boosting classifier generates better predictions, so we weight it high
predictions = (full_predictions[0] * 3 + full_predictions[1]) / 4
predictions
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-06-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习与统计学 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档