如何学习大数据技术

学习大数据技术,首先要明确大数据的概念。

大数据的概念作者认为有如下几点:

1.数据的来源多样性。例如关系数据库+文本+excel等

2.数据量大。TB级别的数据。

3.业务应用领域。实时性高与实时性不高的应用。

学习大数据应该就是要解决上述三个技术问题。

针对第一个问题,就是ETL技术-数据的抽取,清洗,加载。传统数据抽取、清洗、加载是无法做到的。例如一个1TB的数据,需要抽取一些客户的基本信息。上万的文件,多种数据库,每个数据库有很多节点等,这些问题如何解决。第二是时间问题,如果这个ETL过长需要半个月时间,那么就没有意义的。

针对第二个问题,数据如何存储,如何查询。TB级的数据如何存储,如何查询,面对亿级别的数据集合,如何提升查询速度。

针对第三个问题,实时分析系统和非实时分析系统。实时分析系统我们如何解决在海量的数据中,及时根据数据分析模型,得出分析报告。非实时系统我们技术要求可能会低些。

围绕解决上述问题为中心,进行探讨学习之路-称为大数据学习之路

在这里还是要推荐下我自己建的大数据学习交流群:199427210,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。

新如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题,已成为热门大数据领域热门问题,以下是对新手如何学习大数据技术问题的解答!

大数据开发学习可以按照以下内容进行学习:

第一阶段:JavaSE+MySql+Linux

学习内容:Java 语言入门 → OOP 编程 → Java 常用Api、集合 → IO/NIO → Java 实

用技术 → Mysql 数据库 → 阶段项目实战 → Linux 基础 → shell 编程

学习目标:学习java语言,掌握java程序编写、面向对象程序开发,掌握MySql体系结构及核心编程技术,打好 Linux 基础,为后续学习提供良好的语言基础。

第二阶段:Hadoop 与生态系统

学习内容:Hadoop → MapReduce → Avro → Hive → HBase → Zookeeper →Flume → Kafka → Sqoop → Pig

学习目标:掌握大数据学习基石Hadoop、数据串行化系统与技术、数据的统计分析、分布式集群、流行的队列、数据迁移、大数据平台分析等

第三阶段:Storm 与Spark 及其生态圈

学习内容:Storm → Scala → Spark → Spark SQL → Spark Streaming →Spark 机器学习

学习目标:让大家拥有完整项目开发思路和架构设计,掌握从数据采集到实时计算到数据存储再到前台展示,所有工作一个人搞定!并可以从架构的层次站在架构师的角度去完成一个项目。

第四阶段:其他

学习内容:Mahout 机器学习→ R 语言→Python

学习目标:机器学习领域经典算法的实现,熟练使用 R语法和统计思维,可以基于具体问题建立数学模型,掌握python技术与数据分析,将数据结果以可视化的直观方式展示给目标用户。

第五阶段:项目实战、技术综合运用

学习内容:某手机公司bug 系统 → 传统广告怎么用大数据 → 类互联网电商网站 → 网站日志收集清洗系统 → 网站流量统计分析系统

学习目标:具备企业级大型完整项目开发能力,综合运用大数据分析知识,完成数据分析、收集、展示的完整流程。

大数据开发相比于数据分析和挖掘来说,对编程基础要高一些,对于零基础学员也会比较困难。然,有道是“有志者事竟成”,用心学习大数据开发,每个人都会有所收获。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

扫码关注云+社区

领取腾讯云代金券